QCD phase diagram from LQCD

Heng-Tong Ding(丁亨通) from CCNU

Jan. 5, 2017@Peking University

QCD phase diagram from LQCD

Heng-Tong Ding(丁亨通) from CCNU

Jan. 5, 2017@Peking University

Quantum ChromoDynamics

Symmetry restoration in extreme conditions?

"The whole is more than sum of its parts." Aristotle, Metaphysica 10f-1045a

$\mu_B \gg \Lambda_{QCD} \text{ or } T \gg \Lambda_{QCD}$

Quarks & Gluons get liberated from nucleons From hadronic phase to A new state of matter: Quark Gluon Plasma (QGP)

QCD phase transitions

What are the orders of QCD phase transitions?

What are the T_c , critical temperatures of these transitions?

What will be the observable phenomena associated with the transitions?

Ginzburg-Landau-Wilson approach

Partition function: $Z = \int [d\sigma] \exp\left(-\int dx \mathcal{L}_{eff}(\sigma(\mathbf{x}); K)\right)$

Landau function: $\mathcal{L}_{eff} = \frac{1}{2} (\nabla \sigma)^2 + \sum a_n(K) \sigma^n$ Same symmetry with the underlying theory

 $\sigma(x)$: order parameter field; K={m,µ}: external parameters

Ginzburg-Landau-Wilson approach

Partition function:
$$Z = \int [d\sigma] \exp\left(-\int dx \mathcal{L}_{eff}(\sigma(x);K)\right)$$

Landau function: $\mathcal{L}_{eff} = \frac{1}{2} (\nabla \sigma)^2 + \sum a_n(K) \sigma^n$

Same symmetry with the underlying theory

 $\sigma(x)$: order parameter field; K={m,µ}: external parameters

2nd order phase transition

```
order parameter M:
 continuous in T
```

fluctuations of M: $\chi(T) = \frac{T}{V} (\langle M^2 \rangle - \langle M \rangle^2)$ $\chi(T_c) \sim V^{(2-\eta)/3}$

1st order phase transition

M: discontinuous in T

fluctuations of M:

$$\chi(T_c) \sim V$$

Lattice QCD

Discretization in Euclidean space

quarks: lattice sites gluons: lattice links

Supercomputing the QCD matter:

structural equivalence between statistical mechanics & QFT on the lattice

$$< \mathcal{O} >= rac{1}{Z} \int \mathcal{D}\mathcal{U} \ \mathcal{D}\psi \ \mathcal{D}\overline{\psi} \ \mathcal{O} \ e^{-S_{lat}}$$

 $S_{lat} = S_g + S_f$
 $Z = \int \mathcal{D}\mathcal{U} \ \mathcal{D}\psi \ \mathcal{D}\overline{\psi} \ e^{-S_{lat}} = \int \mathcal{D}\mathcal{U} \ e^{-S_g} \ \det M_f$
 $N_c \otimes N_f \otimes N_{spin} \otimes N_d \otimes N_\sigma \otimes N_\tau^3 \ge 10^6$

chiral condensate: $\langle \bar{q}q \rangle = \frac{\partial \ln Z}{\partial m_q} = \frac{n_f}{4} \langle \text{Tr} M^{-1} \rangle$

天津超算中心天河一号 GPU

广州超算中心天河二号 Xeon Phi Coprocessors

无锡神威太湖之光 申威-64-CPU

德国Jülich超算科研中心 IBM Bluegene Q

日本理化研究所 京超级计算机 CPU

美国橡树岭国家实验室 Titan超级计算机GPU

- N: Nuclear
- S: Science
- **C**³: Color 3 -> QCD

计算决定未来!

"道生一,一生二,二生三,三生万物"——《道德经》老子 600 BC High Performance, Low Power Consumption ~100% utilized

- N: Nuclear National
- S: Science
- **C**³: Color 3 -> QCD

"道生一,一生二,二生三,三生万物"—-《道德经》老子 600 BC High Performance, Low Power Consumption ~100% utilized

计算决定未来!

10/42

First installation (2017): Peak performance 1 PFlops/s, 400 TB storage

Lattice QCD
 Heavy Ion Experiment
 Phenomenological calculations

High Performance, Low Power Consumption

~1/2 中科院'元'超级计算中心@2015的理论峰值: 2.3 PFlops/s(处理器: 混搭) ~ 1/10 Italian Cineca Supercomputer 'MARCONI'@2016

First installation (2017): Peak performance 1 PFlops/s, 400 TB storage

Lattice QCD
 Heavy Ion Experiment
 Phenomenological calculations

High Performance, Low Power Consumption

~1/2 中科院'元'超级计算中心@2015的理论峰值: 2.3 PFlops/s(处理器: 混搭) ~ 1/10 Italian Cineca Supercomputer 'MARCONI'@2016

QCD Phase Diagram

The QCD phase structure is under extensively investigation by Heavy Ion Collision (HIC) Experiment

Hadronic fluctuations and abundance are measured at freezeout

Beam Energy Scan at RHIC

Hydrodynamics & Thermodynamics in (T_{ch},µ_B): J. Cleymans et al., PRC 73 (2006)034906

 $0 \lesssim \mu_B/T \lesssim 3$

Beam Energy Scan at RHIC

Ratio of the 4th to 2nd order proton number fluctuations

Can this non-monotonic behavior be understood in terms of the QCD thermodynamics in equilibrium?

What is the relation of this intriguing phenomenon to the critical behavior of QCD phase transition?

QCD phase diagram

QCD transition with $m_{\pi} = 140$ MeV at $\mu_B = 0$

QCD Thermodynamics at $\mu_B=0$

HotQCD: PRD 90(2014)094503

Pressure, energy and entropy densities rise rapidly in the cross over temperature region approaching to the non-interaction limit

In the critical T region, $\epsilon_c \in (180,500)$ MeV/fm³, note that $\epsilon_{nuclear} = 150$ MeV/fm³ and $\epsilon_{proton} = 450$ MeV/fm³

QCD phase structure in the quark mass plane

columbia plot, PRL 65(1990)2491

HTD, F. Karsch, S. Mukherjee, arXiv:1504.0527

RG arguments:

- - Critical lines of second order transition
 - $N_f=2: O(4)$ universality class
 - $N_f=3: Z(2)$ universality class

K. Rajagopal & F. Wilczek, NPB 399 (1993) 395

F. Wilczek, Int. J. Mod. Phys. A 7(1992) 3911,6951

Gavin, Gocksch & Pisarski, PRD 49 (1994) 3079

Lattice QCD calculations:

- The value of tri-critical point (m^m_s)?
- The location of 2nd order Z(2) lines ?
- The influence of criticalities to the physical point ?

QCD transitions at the physical point

Karsch et al., '03, X.-Y. Jin et al., '15

chiral phase transition in Nf=3 QCD at $\mu_B=0$

mass region: $200 \text{MeV} \lesssim m_{\pi} \lesssim 80 \text{MeV}$

No evidence of a first order phase transition

HTD, lattice 2015, Bielefeld-BNL-CCNU, to appear soon

Chiral phase transition in Nf=3 QCD at $\mu_B=0$

disconnected chiral susceptibility

(ml, ms):(0.00375,0.10125)

HTD, Lattice 2015, Bielefeld-BNL-CCNU, to appear soon

Close to Z(2) phase transition line:

$$\chi_{q,disc}^{max} \sim (m - m_c)^{1/\delta - 1}$$

critical quark mass $m_c \sim 0.0004 \implies m_\pi^c \lesssim 50 \text{MeV}$

Chiral phase transition in Nf=3 QCD at $\mu_B=0$

(ml, ms):(0.00375,0.10125)

HTD, Lattice 2015, Bielefeld-BNL-CCNU, to appear soon

Close to Z(2) phase transition line:

$$\chi_{q,disc}^{max} \sim (m - m_c)^{1/\delta - 1}$$

critical quark mass $m_c \sim 0.0004 \implies m_\pi^c \lesssim 50 \text{MeV}$

Chiral phase transition region in Nf=3 QCD at $\mu_B=0$

Whether the 1st order chiral phase transition is relevant for the physical point at all?

Universal behavior of chiral phase transition in Nf=2+1 QCD at $\mu_B=0$

Behavior of the free energy close to critical lines

 $f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T), z=t/h^{1/\beta\delta}$

h: external field, t: reduced temperature, β , δ : universal critical exponents

 $M = -\partial f(t,h) / \partial h = h^{1/\delta} f_G(z) + f_{reg}(t,h)$

 $h \sim m; t \sim T-T_c$ f_G(z): (O(2))scaling functions

Good evidence of O(N) scaling for chiral phase transition

Sheng-Tai Li, Lattice 2016, Bielefeld-BNL-CCNU, in preparation

role of $U_A(1)$ symmetry in Nf=2 QCD

 $U_A(1)$ symmetry on the lattice:

 always broken in the Wilson/ Staggered discretization scheme

U_A(1) symmetry:

- restored, 1st or 2nd order $(U(2)_L \otimes U(2)_R/U(2)_V)$
- broken, 2nd order (O(4)) phase transition

Pisarski and Wilczek, PRD 29(1984)338 Butti, Pelissetto and Vicar, JHEP 08 (2003)029

Fate of chiral symmetries at T=/=0: Nf=2+1 QCD

At the physical point, U(1)_A does not restore at $T_{\chi SB} \sim 170$ MeV, remains broken up to 195 MeV ~ 1.16T_{$\chi SB}$ </sub>

HotQCD, PRL 113 (2014) 082001, PRD 89 (2014) 054514

Baryon number fluctuations according to 3-d O(4) universality class

Lattice QCD simulation at $\mu_B = /= 0$ fermion sign problem

QCD:

$$Z = \operatorname{Tr}\left[e^{-(H-\mu N)/T}\right] = \int [\mathrm{d}A] \frac{\det[D+m_q+i\mu\gamma_4]}{\operatorname{complex}} e^{-S(A)}$$

Toy model: Yagi, Hatsuda & Miake, "Quark-Gluon Plasma — From Big Bang to Little Bang"

$$Z = \sum_{\{\phi(x)=\pm 1\}} \operatorname{sign}(\phi) e^{-S(\phi)}; \quad Z_0 = \sum_{\{\phi(x)=\pm 1\}} e^{-S(\phi)}$$

$$\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O}(\phi) \operatorname{sign}(\phi) \rangle_0}{\langle \operatorname{sign}(\phi) \rangle_0} , \quad \langle \operatorname{sign}(\phi) \rangle_0 = \frac{Z}{Z_0} = e^{-(f - f_0)V/T} \ll 1$$

$$f(f_0): \text{ free energy dense}$$

f(f₀): free energy density corresponding to Z(Z₀)

$$\frac{\Delta \operatorname{sign}(\phi)}{\langle \operatorname{sign}(\phi) \rangle_0} = \frac{\sqrt{\langle \operatorname{sign}^2 \rangle_0 - \langle \operatorname{sign} \rangle_0^2}}{\sqrt{N} \langle \operatorname{sign} \rangle_0} \simeq \frac{e^{(f-f_0)V/T}}{\sqrt{N}} \ll 1 \qquad N \gg e^{2(f-f_0)V/T}$$

EoS at nonzero μ_B from LQCD

Taylor expansion of the QCD pressure:

Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Faylor expansion coefficients at μ =0 are computable in LQCD

fluctuations of
conserved charges:
$$\chi^{BQS}_{ijk} \equiv \chi^{BQS}_{ijk}(T) = \frac{1}{VT^3} \frac{\partial P(T,\hat{\mu})/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S}\Big|_{\hat{\mu}=0}$$

Other quantities can be obtained using relations, e.g.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial P/T^4}{\partial T} = \sum_{i,j,k=0}^{\infty} \frac{T \,\mathrm{d}\chi_{ijk}^{BQS}/\mathrm{d}T}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Truncation effects of pressure in HRG

Pressure of hadron resonance gas (HRG)

$$P(T, \mu_B) = P_M(T) + P_B(T, \hat{\mu}_B)$$

= $P_M(T) + P_B(T, 0) + P_B(T, 0)(\cosh(\hat{\mu}_B) - 1)$

Radius of convergence from HRG is infinity

Pressure of QCD at $\mu_B = /= 0$

$$\mu_{Q} = \mu_{S} = 0: \qquad \Delta(P/T^{4}) = \frac{P(T, \mu_{B}) - P(T, 0)}{T^{4}} = \sum_{n=1}^{\infty} \frac{\chi_{2n}^{B}(T)}{(2n)!} \left(\frac{\mu_{B}}{T}\right)^{2n} \\ = \frac{1}{2}\chi_{2}^{B}(T)\hat{\mu}_{B}^{2}\left(1 + \frac{1}{12}\frac{\chi_{4}^{B}(T)}{\chi_{2}^{B}(T)}\hat{\mu}_{B}^{2} + \frac{1}{360}\frac{\chi_{6}^{B}(T)}{\chi_{2}^{B}(T)}\hat{\mu}_{B}^{4} + \cdots\right)$$

LO expansion coefficient variance of net-baryon number distri.

NLO expansion coefficient kurtosis * variance

Bielefeld-BNL-CCNU, to appear soon

Pressure of QCD at $\mu_B = /= 0$

$$\begin{aligned} \Delta(P/T^4) &= \frac{P(T,\mu_B) - P(T,0)}{T^4} = \sum_{n=1}^{\infty} \frac{\chi_{2n}^B(T)}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n} \\ &= \frac{1}{2} \chi_2^B(T) \hat{\mu}_B^2 \left(1 + \frac{1}{12} \frac{\chi_4^B(T)}{\chi_2^B(T)} \hat{\mu}_B^2 + \frac{1}{360} \frac{\chi_6^B(T)}{\chi_2^B(T)} \hat{\mu}_B^4 + \cdots \right) \end{aligned}$$

NNLO expansion coefficient

 $\mu_Q = \mu_S = 0$:

PQM with O(4) symmetry

Cumulants of net proton number fluctuations

conserved charge fluctuations & freeze-out

Pressure and baryon number density
$$\mu_Q = \mu_s = 0$$

Bielefeld-BNL-CCNU, to appear soon

$$\frac{P(T,\mu_B) - P(T,0)}{T^4} = \sum_{n=1}^{\infty} \frac{\chi_{2n}^B(T)}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n} = \frac{1}{2}\chi_2^B(T)\hat{\mu}_B^2 \left(1 + \frac{1}{12}\frac{\chi_4^B(T)}{\chi_2^B(T)}\hat{\mu}_B^2 + \frac{1}{360}\frac{\chi_6^B(T)}{\chi_2^B(T)}\hat{\mu}_B^4 + \cdots\right)$$
$$\frac{n_B}{T^3} = \sum_{n=1}^{\infty} \frac{\chi_{2n}^B(T)}{(2n-1)!}\hat{\mu}_B^{2n-1} = \chi_2^B(T)\hat{\mu}_B \left(1 + \frac{1}{6}\frac{\chi_4^B(T)}{\chi_2^B(T)}\hat{\mu}_B^2 + \frac{1}{120}\frac{\chi_6^B(T)}{\chi_2^B(T)}\hat{\mu}_B^4 + \cdots\right)$$

Conditions meet in heavy ion collisions

 Zero net strangeness n_S=0, and n_Q/n_B=r=0.4 as in PbPb collision systems

$$\frac{n_X}{T^3} = \frac{\partial P/T^4}{\partial \hat{\mu}_X}$$
, X=B,Q,S

$$n_S = n_S^{(1)} \mu_B + n_S^{(3)} \mu_B^3 + \dots = 0, \quad n_Q = n_Q^{(1)} \mu_B + n_Q^{(3)} \mu_B^3 + \dots$$
$$n_I = n_I^{(1)} \mu_B + n_I^{(3)} \mu_B^3 + \dots = (\frac{1}{r} - 2)n_Q$$

E.g. 1st order coefficient in n_S: $n_{S}^{(1)} = \chi_{2}^{S} \frac{\mu_{S}}{\mu_{B}} + \chi_{11}^{QS} \frac{\mu_{Q}}{\mu_{B}} + \chi_{11}^{BS}$

 μ_{S} , μ_{Q} and μ_{B} are correlated

,

Conditions meet in heavy ion collisions Taylor expansion of the QCD pressure: BQS ∞ k $\frac{p}{T^4} =$

$$= \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0} \frac{\chi_{ijk}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^i$$

$$\mu_Q = \mu_s = 0$$
:

 $\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{\chi_{2n}^B}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$ $\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{\chi^B_{2n,\mathrm{SN}}}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$

strangness neutral case:

Expand μ_Q and μ_S in terms of μ_B

$$\frac{\mu_Q}{T} = q_1 \frac{\mu_B}{T} + q_3 \left(\frac{\mu_B}{T}\right)^3 + \cdots, \quad \frac{\mu_S}{T} = s_1 \frac{\mu_B}{T} + s_3 \left(\frac{\mu_B}{T}\right)^3 + \cdots$$

With constrains from isospin symmetry etc., one can derive q_i and s_i order by order and then the pressure etc.

A. Bazavov, HTD et al., Phys. Rev. Lett. 109 (2012)192302

Pressure and baryon number density in the strangeness neutral case

The EoS is well under control at µ_B/T≲2 or √s_{NN} ≥12 GeV

Line of constant physics and freeze-out

Estimates of the radius of convergence

Taylor expansion of the pressure: $\frac{P}{T^4} = \sum_{n=0}^{\infty} \frac{1}{n!} \chi_n^B(T) \left(\frac{\mu_B}{T}\right)^n$

radius of convergence = $\lim_{n \to \infty} r_{2n}^{\chi,a} = \lim_{n \to \infty} r_{2n-2}^{\chi,b}$

$$r_{2n}^{\chi,a} = \Big|\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}\Big|^{1/2} , \quad r_{2n-2}^{\chi,b} = \Big|\frac{(2n)!\,\chi_2^B}{\chi_{2n}^B}\Big|^{1/2n}$$

The Radius of Convergence corresponds to a critical point only if all $\chi_n > 0$ for all $n > n_0$

This forces P/T⁴ and $\chi^B_{n,\mu}$ grows monotonically with $\mu_{\rm B}/{\rm T}$

 $(\kappa \sigma^2)_B = \chi^B_{4,\mu} / \chi^B_{2,\mu} > 1$

Otherwise: 1) the ROC does not determine a critical point 2) Taylor expansion is not applicable near the critical point

Estimates of the radius of convergence radius of convergence = $\lim_{n \to \infty} r_{2n}^{\chi,a} = \lim_{n \to \infty} r_{2n-2}^{\chi,b}$ $r_{2n}^{\chi,a} = \left|\frac{2n(2n-1)\chi_{2n}^B}{\chi_{2n+2}^B}\right|^{1/2}, \quad r_{2n-2}^{\chi,b} = \left|\frac{(2n)!\chi_2^B}{\chi_{2n}^B}\right|^{1/2n}$ 1.2 At T \leq T_{pc} contr. est. HRG r_{min} 4 N_τ=6 ⊢ 8 0.8 m_s/m_l=20 (open) 9.0 X^B₇X^B₂ 27 (filled) 2.8 0.4 0.2 free quark gas 2 0 cont. est. 3 N_τ=6 ⊢ 8 2 $m_s/m_l=20$ (open) 27 (filled) HRG χ^B_{6}/χ^B_{2} 0 $r_4^{\chi,a}$ $r_2^{\chi,b}$ $r_2^{\chi,a}$ $r_4^{\chi,b}$ -1 4/6 2/4 2/42/6-2 200 280 220 240 140 160 180 260 40/42 T [MeV]

4

3

2

1

0

Conclusions

The 2nd O(4) chiral phase transition seems more relevant to the thermodynamics at the physical point at vanishing baryon density

M EoS from Taylor expansions of QCD partition functions are now reliable in the region $\mu_B/T \le 2$ or $\sqrt{s_{NN}} \ge 12$ GeV

⊠ Properties of cumulants measured in BES-I for $\sqrt{s_{NN}} \gtrsim 20$ GeV clearly differs from HRG thermodynamics but are consistent to QCD thermodynamics close to the transition region

 \checkmark A QCD critical point is strongly disfavored at $\mu_B/T \leq 2$

谢谢!

Thanks for your attention!