Z' and ATLAS single eµ event

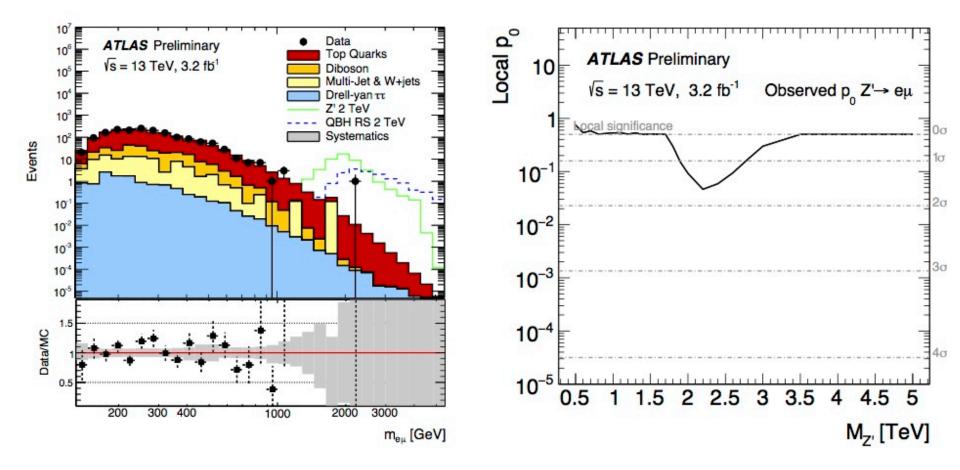
Wai-Yee Keung 美律宜 University of Illinois at Chicago (UIC)

New Physics at the LHC Run 2

KITPC, Beijing 2016

arXiv:1606.06696

with K. Cheung and P.Y. Tseng (NTHU, Hsinchu)



using 3.2 fb⁻¹ data at $\sqrt{s} = 13$ TeV one event at $m_{e\mu} = 2.1$ TeV largest local significance is 1.7σ $\sigma(pp \to X) \times B(X \to e^{\pm}\mu^{\mp}) \simeq 1 - 2$ fb

$$\mathcal{L}_{ ext{NC}} = -g' J^{(2)\mu} Z'_{\mu} \qquad J^{(2)}_{\mu} = \sum_{i,j} ar{\psi}_i \gamma_{\mu} \left[\epsilon^{\psi}_{Lij} P_L + \epsilon^{\psi}_{Rij} P_R \right] \psi_j$$

$$\epsilon_{L,R}^u = Q_{L,R}^{\prime(u)} \, diag(1,1,1) \qquad \epsilon_{L,R}^d = Q_{L,R}^{\prime(d)} \, diag(1,1,1)$$

$$\epsilon_L^l = diag(Q_L^{\prime(e)},Q_L^{\prime(\mu)},Q_L^{\prime(au)})$$

$$\mathcal{L}_{NC} = -g' Z'_{\mu}(\bar{u}, \bar{c}, \bar{t})_{M} \gamma^{\mu} (V^{\dagger}_{uL} \epsilon^{u}_{L} V_{uL} P_{L} + V^{\dagger}_{uR} \epsilon^{u}_{R} V_{uR} P_{R}) (u, c, t)^{T}_{M}$$

$$-g' Z'_{\mu} (\bar{d}, \bar{s}, \bar{b})_{M} \gamma^{\mu} (V^{\dagger}_{dL} \epsilon^{d}_{L} V_{dL} P_{L} + V^{\dagger}_{dR} \epsilon^{d}_{R} V_{dR} P_{R}) (d, s, b)^{T}_{M}$$

$$-g' Z'_{\mu} (\bar{e}, \bar{\mu}, \bar{\tau})_{M} \gamma^{\mu} (U^{\dagger}_{lL} \epsilon^{l}_{L} U_{lL} P_{L} + U^{\dagger}_{lR} \epsilon^{l}_{R} U_{lR} P_{R}) (e, \mu, \tau)^{T}_{M}$$

$$\Rightarrow \mathcal{L}_{NC} = -Z'_{\mu}(\bar{u}, \bar{c}, \bar{t})_{M} \gamma^{\mu} (g_{L}^{u} P_{L} + g_{R}^{u} P_{R}) (u, c, t)_{M}^{T}$$

$$-Z'_{\mu}(\bar{d}, \bar{s}, \bar{b})_{M} \gamma^{\mu} (g_{L}^{d} P_{L} + g_{R}^{d} P_{R}) (d, s, b)_{M}^{T}$$

$$-Z'_{\mu}(\bar{e}, \bar{\mu}, \bar{\tau})_{M} \gamma^{\mu} (g_{L}^{l} P_{L} + g_{R}^{l} P_{R}) (e, \mu, \tau)_{M}^{T}$$

$$U_{PMNS} = U_{lL}^\dagger U_
u \quad U_
u = \mathbf{1} \qquad V_{PMNS} = U_{lL}^\dagger$$

$$g_L^l = g' U_{PMNS} \epsilon_L^l U_{PMNS}^\dagger$$

normal hierarchy(NH)

$$U_{PMNS} = \begin{pmatrix} 0.822 & 0.548 & -0.0518 + 0.144i \\ -0.388 + 0.0791i & 0.643 + 0.0528i & 0.653 \\ 0.399 + 0.0898i & -0.528 + 0.0599i & 0.742 \end{pmatrix}$$

inverse hierarchy(IH).

$$U_{PMNS} = \begin{pmatrix} 0.822 & 0.548 & -0.0525 + 0.146i \\ -0.380 + 0.0818i & 0.634 + 0.0546i & 0.666 \\ 0.407 + 0.0895i & -0.540 + 0.0597i & 0.729 \end{pmatrix}$$

CONSTRAINTS FROM $e^{\pm}\mu^{\mp}$, $e^{+}e^{-}$, $\mu^{+}\mu^{-}$, $\tau^{+}\tau^{-}$, AND jj PRODUCTION

$$\sigma(pp \to Z') \times B(Z' \to e^+e^-) \lesssim 1.5 \text{ fb}$$

 $\sigma(pp \to Z') \times B(Z' \to \mu^+\mu^-) \lesssim 2 \text{ fb.}$

$$\sigma(pp \to Z') \times B(Z' \to e^{\pm} \tau^{\mp}) \lesssim 5 \text{ fb}$$

$$\sigma(pp \to Z') \times B(Z' \to \mu^{\pm} \tau^{\mp}) \lesssim 9 \text{ fb}$$

The dijet limits from ATLAS [11, 13] are about $\sigma(pp \to Z') \times B(Z' \to jj) \times A \lesssim 0.5$ pb for a narrow-width Z', and $\lesssim 1$ pb for $\Gamma_{Z'}/m_{Z'} = 0.15$ at $M_{Z'} \simeq 2.1$ TeV. From the CMS [12], $\sigma(pp \to Z') \times B(Z' \to jj) \times A \lesssim 1$ pb for the narrow-width case. Here A is the acceptance ratio due to selection cuts, and ranges between 40 - 60%.

TABLE I. Various experimental constraints coming from the LHC, rare lepton-flavor violating decays, and μ -e conversions, as well as the predictions of the benchmark point (Z' M-1): (NH) g'=1, $\epsilon_L^u=-\epsilon_R^u=diag(0.2,0.2,0.2)$, $\epsilon_L^d=-\epsilon_R^d=diag(0.2,0.2,0.2)$, $\epsilon_L^d=1/10\times diag(-0.404,0.912,-0.064)$, $\epsilon_R^l=0$. The total width of the Z' is $\Gamma_{Z'}=40.7$ GeV, and the Z' production cross section $\sigma(pp\to Z')=367$ fb at the 13 TeV LHC.

observable	exp.	Z^\prime M-1
$\sigma(pp \to Z') \times B(Z' \to e^{\pm}\mu^{\mp})$ [fb]	$1 \sim 2$ [1]	1.03
$\sigma(pp o Z') imes B(Z' o e^+e^-)$ [fb]	≲1.5 [10]	1.4×10^{-7}
$\sigma(pp\to Z')\times B(Z'\to \mu^+\mu^-)$ [fb]	≲2 [10]	0.210
$\sigma(pp o Z') imes B(Z' o au^+ au^-)$ [fb]	-	0.060
$\sigma(pp \to Z') \times B(Z' \to e^{\pm} \tau^{\mp})$ [fb]	≲ 5 [1]	0.782
$\sigma(pp \to Z') \times B(Z' \to \mu^{\pm} \tau^{\mp})$ [fb]	≲ 9 [1]	0.428
$\sigma(pp \to Z') \times B(Z' \to jj)$ [fb]	≲500 [11]	362

$B(\mu o e\gamma)$	$< 4.2 \times 10^{-13} [20]$	4.4×10^{-13}
$B(\mu^- o e^-e^-e^+)$	$< 1.0 \times 10^{-12} [15]$	1.1×10^{-16}
$B(au o \mu\gamma)$	$< 4.4 \times 10^{-8} $ [15]	1.2×10^{-13}
$B(au^- o \mu^- \mu^- \mu^+)$	$< 2.1 \times 10^{-8} \ [15]$	1.2×10^{-11}
$B(au^- o \mu^- e^- e^+)$	$< 1.8 \times 10^{-8} $ [15]	2.7×10^{-11}
$B(au o e\gamma)$	$< 3.3 \times 10^{-8} $ [15]	4.8×10^{-14}
$B(au^- o e^-e^-e^+)$	$< 2.7 \times 10^{-8} \ [15]$	1.5×10^{-17}
$B(au^- o e^-\mu^-\mu^+)$	$< 2.7 \times 10^{-8} \ [15]$	5.0×10^{-11}
$B(\mu { m Ti} ightarrow e { m Ti})$	$< 6.1 \times 10^{-13} \ [24]$	0
$B(\mu { m Au} o e { m Au})$	$< 7.0 \times 10^{-13} [15]$	0
$B(\mu { m Al} o e { m Al})$	-	0

$$B(l_j \to l_i \gamma) = \frac{\alpha_e \tau_j m_j}{9(4\pi)^4} \left(\frac{m_j}{m_{Z'}} \right)^4 \left(\left| \sum_k (g_L^l)_{jk} (g_L^l)_{ki} - \frac{3m_k}{m_j} (g_L^l)_{kj} (g_R^l)_{ki} \right|^2 + (L \leftrightarrow R) \right)$$

 $\mu \to e\gamma$. If both left- and right-handed couplings are nonzero, the diagram with the mass insertion in the τ running in the loop will be enhanced by the factor m_{τ}/m_{μ} . Therefore, in order to dodge the experimental limit of $B(\mu \to e\gamma)$, we assume $g_R^l = 0$.

$$B(l_j \to l_i l_k \bar{l}_l) = \frac{\tau_j m_j}{1536\pi^3} \left(\frac{m_j}{m_{Z'}}\right)^4$$

$$\times \left(\left| (g_L^l)_{ij} (g_L^l)_{kl} + (g_L^l)_{kj} (g_L^l)_{il} \right|^2 + \left| (g_L^l)_{ij} (g_R^l)_{kl} \right|^2 + \left| (g_L^l)_{kj} (g_R^l)_{il} \right|^2 + (L \leftrightarrow R) \right)$$

limit of $\mu^- \rightarrow e^- e^- e^+$ is less than 1.0×10^{-12}

$$(g_L^l)_{11} \approx 0$$

How to tune zero in

Z'ee coupling, i.e $(g_L^l)_{11}$. The Z' couplings are $g_L^l = g'U_{PMNS}\epsilon_L^lU_{PMNS}^\dagger$, where $\epsilon_L^l = diag(Q_L'^{(e)}, Q_L'^{(\mu)}, Q_L'^{(\tau)})$. The coupling $(g_L^l)_{ij}$ depends linearly on $Q_L'^{(e)}, Q_L'^{(\mu)}, Q_L'^{(\tau)}$ with coefficients $(\vec{A}_{ij})_l$,

$$(\vec{A}_{ij})_l = (U_{PMNS})_{il}(U_{PMNS}^*)_{jl}$$

 $(g_L^l)_{ij} = g'(\vec{A}_{ij})_l \ Q'_L^{(l)} \ , \ \text{or} \ \ g'\vec{A}_{ij} \cdot \vec{Q}'_L$

$$\vec{A}_{12} \simeq (-0.319, 0.353, -0.034)$$
 $\vec{A}_{11} \simeq (0.676, 0.301, 0.023)$

$$\vec{A}_{12} - \vec{A}_{11} \frac{\vec{A}_{11} \cdot \vec{A}_{12}}{|\vec{A}_{11}|^2} = \vec{A}_{12} + 0.201 \vec{A}_{11} \propto (-0.404, 0.912, -0.064)$$

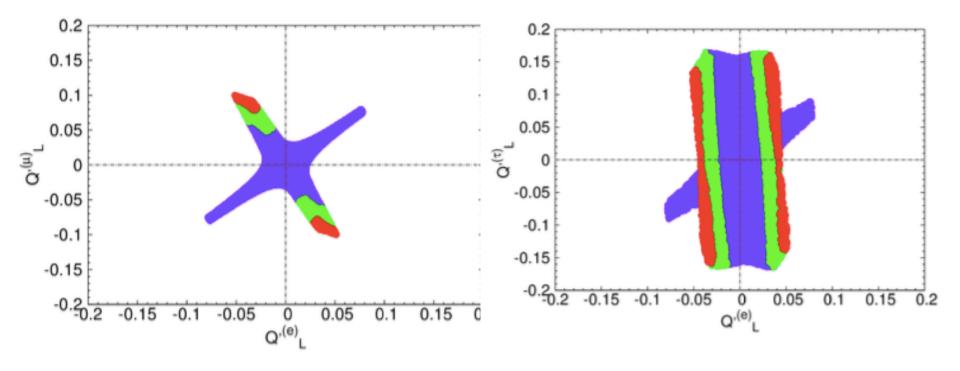


FIG. 1. Scanning over $Q_L^{\prime(e)}$, $Q_L^{\prime(\mu)}$, and $Q_L^{\prime(\tau)}$, while fixing g'=1, $\epsilon_L^{u,d}=-\epsilon_R^{u,d}=diag(0.2,0.2,0.2)$, and $\epsilon_R^l=0$. The colored points satisfy all the experimental limits listed in Table I, except for $\sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\simeq 1\sim 2$ fb. Blue points: $\sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 0.5$ fb, are the majority. Green points: $0.5\leq \sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 1.0$ fb. Red points: $1.0\leq \sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 2.0$ fb are the minority.

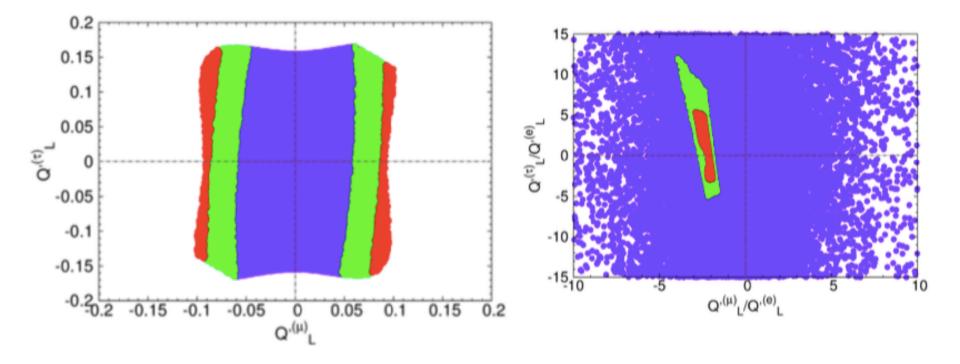


FIG. 1. Scanning over $Q_L^{\prime(e)}$, $Q_L^{\prime(\mu)}$, and $Q_L^{\prime(\tau)}$, while fixing g'=1, $\epsilon_L^{u,d}=-\epsilon_R^{u,d}=diag(0.2,0.2,0.2)$, and $\epsilon_R^l=0$. The colored points satisfy all the experimental limits listed in Table I, except for $\sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\simeq 1\sim 2$ fb. Blue points: $\sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 0.5$ fb, are the majority. Green points: $0.5\leq \sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 1.0$ fb. Red points: $1.0\leq \sigma(pp\to Z')\times B(Z'\to e^\pm\mu^\mp)\leq 2.0$ fb are the minority.

Conclusion

Three U'(1) charges for charged leptons

Universal and axial-vector-like couplings to quarks

to enhance the $Z'\mu e$ but suppress Z'ee couplings

assign the U'(1) charges, $\epsilon_L^l = 1/10 \times diag(-0.404, 0.912, -0.064)$,