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Motivations



Motivations
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• There is a long history in the study of Parity (P)-violation in 
fundamental interactions

• P-violation in charged weak current: beta decay experiment of Co60

(Wu et al, 1957) provided hints for the V-A interaction

• P-violation in neutral weak-current: flavor-diagonal PV-interactions. 
E.g. PVES and PVDIS. Important in determining the weak mixing 
angle.

• Probing P-violation in non-leptonic processes is more difficult due to 
the dominance of strong interaction.



• Studies of hadronic Weak interaction helps improving our 
understandings of the black box of Strong dynamics!

• Furthermore, it allows for studies of strong dynamics that are difficult 
to probe in pure QCD processes themselves, such as strongly-dressed 
axial interactions.

Motivations
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The “probe”:
known “bare”

weak interaction

Strong 
Dynamics

The “outcome”:
“dressed” weak

interaction,
measurable in 

experiments

What do we want to learn?



• Along this line of thought, we are more interested in 
“UNPROTECTED” hadronic weak processes.

• What does “protected” mean? E.g. beta decay of 0+ nuclei:

• This is good for extracting weak parameters, but not very useful in 
probing strong dynamics.

• Therefore, we wish to studies weak hadronic processes that are NOT
protected by well-known symmetries of QCD!

Motivations
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The hadronic matrix element:

mVudV udud 220)1(0 5
0 =− ++ γγ

is “protected” by isospin symmetry!



Motivations
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• Weak interaction is too weak at low energy!

• Usually overshadowed by pure strong interaction; exceptions are 
observables that violate discrete symmetries: e.g. hadronic P-
violations ,which are also unprotected processes in general!

• Examples of low-energy hadronic P-violation experiments:
• Longitudinal Analyzing Power (LAP)
• Gamma-ray asymmetry
• Gamma-ray circular polarization 
• ….

• Fundamental challenge for theorists: are we able to precisely 
reproduce experimental results from SM?
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Theories and Experiments



• Electroweak interaction in quark sector:

• Heavy boson integrated out, in replacement of four-quark 
operators:

• Possible isospin channels:  ∆I=0,1,2
• The Wilson coefficients are (more or less) known
• At lower energy the effective degrees of freedom become 

hadrons. Effective field theories (EFTs) are used.
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Theories

(CKM matrix included in the charged weak current)
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SM EW Lagrangian

Four-Quark Operators

Meson-Exchange 
Theory (DDH)

Pion-full
EFT

Pion-less EFT/ NR nuclear potential 

Wm

χΛ

πm

YES

YES
(……)

NO/
From Experiment 

NO/
From Experiment 

Desplanques et al., Ann. Phys.
124 (1980) 449

Zhu et al., Nucl.Phys.A
748 (2005) 435

Parameters Known? Energy Scale

Theories
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SM EW Lagrangian

Four-Quark Operators

Meson-Exchange 
Theory (DDH)

Pion-full
EFT

Pion-less EFT/ NR nuclear potential 

Wm

χΛ

πm

Energy ScaleParameters Known?
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(……)
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From Experiment 

NO/
From Experiment 

Desplanques et al., Ann. Phys.
124 (1980) 449

Zhu et al., Nucl.Phys.A
748 (2005) 435

Equivalent at very low energy. Five independent parameters in terms of Danilov S-P partial waves: 
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Classic Model: the DDH meson-exchange theory

Meson exchanged: ωρπ ,,
• Special roles of ∆I=1 hadronic parity-violation: 

a) Primarily probing the neutral weak current

b) The only pion-exchange interaction in DDH model. Thus, for a 
very long time it was expected to dominate the long-range 
nuclear parity violation. 

)2()0(
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Theories
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Recent large-Nc analysis suggests a suppression of ∆I=1 PV:

Gardner, Haxton and Holstein, Ann.Rev.Nucl.Part.Sci 67 (2017) 1917

Two LO LECs at large-Nc: ∆Ι=0,2

+Λ0
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PS −Λ

The “Rosetta Stone” (one version of EFT)

Theories

“Hadronic parity violation: a new paradigm”
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TRIUMF, 221MeV

Experiments
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Experiments
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Experiments
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Probes of ∆Ι=1 PV have so far returned null results:

710−×

710−×

Haxton and Holstein, Prog.Part.Nucl.Phys.71(2013)185

[6] Meissner and Weigel, Phys.Lett.,B447,1(1999)
[7] Henley, Hwang and Kisslinger, Phys.Lett.B 440,449 (1998)
[8] Lobov, Phys.Atom.Nucl. 65,534 (2002)

All indicate suppression wrt NDA estimate:
61 10~~ −Λχππ FGh F

Experiments
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Ongoing experimental efforts:

• NPDGamma at the Spallation Neutron Source (SNS), Oak 
Ridge: sensitive to I=1 parity violation. Target: Aγ ~10-8

• Proton asymmetry in                                at SNS: projected accuracy 
of 1.6*10-8.

• Neutron spin rotation in              at the National Bureau of 
Standards and Technology (NIST)

Experimental opportunities in China:

• China Initial Accelerator-driven subcritical reactor research facility 
(CI-ADS) and High-flux heavy ion accelerator (HIAF) are designed to 
provide high-intensity proton beam. Question: can the beam be made 
polarized?

• If yes, then a TRIUMF-like experiment (measuring LAP) is 
possible;

• If no, then detectors will be needed to measure the circular 
polarization of final products.

Experiments
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Lattice QCD



• Lattice effort to evaluate hπ
1 :

• Signal extracted only from connected diagram.
• Extra complications due to the existence of π: 

• Three-quark interpolating operator for Nπ state: small overlap
• Energy insertion needed due to 
• Re-scattering effect of Nπ induces power-law finite-volume 

correction
• Unphysical pion mass
• Finite lattice spacing effect not addressed

20

Signal/noise ratio too low!

Lattice QCD: ∆Ι=1

pn EE >π

Wasem, PRC 85, 022501 (2012)

MeV 389=πm

Compatible with experiments and models



• Ongoing lattice calculation of  ∆I=2 PV NN-scattering amplitude:

• Advantage: no disconnected (quark loop) diagrams

• Very preliminary. Most lattice complexities are not addressed. 21

Kurth et al., PoS LATTICE2015 (2016) 329
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Lattice QCD: ∆Ι=2
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Some Recent Theoretical 
Developments
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• Many complications in the study of hπ
1  stem from the existence of pion 

which makes the final state a two-body problem

• Special role of pion in QCD: Goldstone boson resulting from SSB of 
SU(2) chiral symmetry!

• Partially-Conserved Axial Current (PCAC) relation:

• Equivalent to leading-order Chiral Perturbation Theory (ChPT)

Soft-Pion Theorem for ∆I=1 PV
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• Our alternative approach to study h1
π:

• Starting point: instead of studying a P-odd NN’π matrix element of 
four-quark operators, we may study a P-even NN matrix element.

• With PCAC + Wigner-Eckart Theorem: 

Nucleon Mass Splitting (Feyman-Hellmann Theorem)

X.Feng , F.K.Guo and CYS, arXiv:1711.09342[nucl-th]. Accepted by PRL.

tsCounterpar
 Chiral     

Soft-Pion Theorem for ∆I=1 PV
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• Derivation from ChPT: combining P-even and P-odd components 

Implemented via a single Spurion:

uuX
RuR

R 3

3LR   :SU(2)SU(2)
τ

τ
+

+
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Leading Chiral Lagrangian:

P-even P-odd

The Matching: Protected against all QCD corrections up to NNLO!
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Soft-Pion Theorem for ∆I=1 PV
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• Benefits our formalism:
• Lattice:

• Avoid the power-law finite-volume effect due to the pion-
nucleon re-scattering

• Avoid the need of introducing extra LECs due to the energy 
insertion to the pnπ vertex

• Avoid calculating complicated contraction diagrams 
involving the interaction between nucleon and pion

• Other effective approaches:
• Object of study becomes a simple spectroscopic quantity
• For diagram-base approach (e.g. Dyson-Schwinger): 

number of contraction diagrams is greatly reduced

Soft-Pion Theorem for ∆I=1 PV
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PQChPT and Disconnected Diagrams

• One major difficulty in lattice calculation is the evaluation of 
DISCONNECTED DIAGRAMS : diagrams involving propagators 
going from time t to time t

• They suffer from unsuppressed noise, leading to low signal-to-noise 
ratio at large Euclidean time separation

• Disconnected diagrams exist for the ∆I=0,1 PV coefficients, making 
their lattice calculations extremely difficult!

ftit
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ttE
ttE if

−−

−−



28

PQChPT and Disconnected Diagrams
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PQChPT and Disconnected Diagrams



30

PQChPT and Disconnected Diagrams
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PQChPT and Disconnected Diagrams
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PQChPT and Disconnected Diagrams

LECs l Unphysica:   
LECs Physical :    

PQ,
0

r

r
i

L
l



33

PV Couplings: Current Situation and Planned Improvements

I=0 coupling I=1 coupling I=2 coupling

Current
Situation

Main
Difficulties

Possible 
Immediate
Improvement

N/A con,1y  Preliminar πh 0
3

0
1

2y Preliminar PS −Λ

• Disconnected diagram
• Complications due to external π
• Unphysical pion mass
• Finite lattice spacing

• (Extremely) unphysical pion 
mass

• Finite lattice spacing

• Reformulate as mass splitting
calculation

• PQChPT for disconnected 
diagram and chiral extrapolation

• Chiral extrapolation
• PQChPT for
disconnected
diagram

• Disconnected diagram

Done

Personal thought: the fastest improved result may come from ∆I=1, followed by ∆I=2.
More thoughts may be needed for ∆I=0.

On the way
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Brief Summary
1. Nuclear PV is a good test ground for our current understanding 

of both strong and weak dynamics at low energy
2. Early studies focused on ∆I=1 PV channel; Recent analysis 

incline more towards ∆I=0,2
3. One main theoretical challenge is the prediction of PV nuclear 

coupling strengths directly from SM; models give non-
convergent results while lattice QCD faces various technical 
difficulties

4. Recent progress: 
• In the ∆I=1 channel, a soft-pion theorem is formulated 

that simplifies the QCD matrix element
• PQChPT is expected to provide hints for the noisy 

disconnected diagrams
5. Series of follow-up work will be performed for a precise 

determination of the PV couplings
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Different Representations of PV Nuclear Potential

PV potential from DDH:
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Different Representations of PV Nuclear Potential

PV potential from Zhu (EFT):
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Different Representations of PV Nuclear Potential

PV potential from Girlanda (EFT):
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Different Representations of PV Nuclear Potential

PV potential in terms of Danilov’s S-P amplitudes:
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