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简介
电弱对称性破缺问题简介？

我们究竟需要解决什什么问题？疑难在哪⾥里里？

电弱对称性破缺的有效拉⽒氏量量，⾮非线性组合。

最⼤大对称性下的复合Higgs模型。

未来展望。



电弱对称性破缺起源



我们的⾼高能物理理

未来⾼高能量量前沿
继续探索未知

过去⼀一个世纪
的⾼高能物理理学



我们已知的“旧”物理理
The Weinberg-Salam Model

 基本粒⼦子图谱 The chosen one!



为什什么Higgs是上帝粒⼦子
Higgs 粒⼦子的势能项

⾃自发性电弱对称性破缺
（Higgs机制）

Higgs机制给予所
有基本粒⼦子质量量

发现Higgs让我们对
质量量起源了了解更更多

规范对称性⾃自发破缺



“旧”物理理中的未知？

Higgs的势能

我们其实从来也不不知道，更更不不知道
为什什么会有电弱对称性破缺

Laudau-Ginzberg 势能（超导）

必须是⼀一个负数，
有原因么

粒⼦子物理理最核⼼心
最现实的问题



“旧”物理理中的未知？
对于Higgs势能的量量⼦子
涨落，泰勒勒展开式

h^4h^3 h^5。。。。。h^9

未来对撞机
的探测重点

暂时实验上看不不到希望

相同的对撞机信
息，不不同的势能



为什什么这是⼀一个问题？
质量量起源的能标

电弱能标

⇤
我们不不
断向上
探索的
能量量

Higgs的势能究竟是啥样？

电弱破缺机制的势能究竟是
怎么来的？

Top, Higgs, W, Z, etc

m2
phys = m2

0 + c⇤2 + ...



为什什么这是⼀一个问题？

电弱能标

⇤
如果Lambda是我们的某些基本
⾼高能标（Plank？GUT? etc), 可怕
的相消. 规范等级度的问题
（Gauge Hierarchy Problem)

Lambda如果很低呢？OK 我们
的新物理理也许并不不远！

两种情况都在我们
的世界完美体现

m2
phys = m2

0 + c⇤2 + ...



电⼦子质量量的启示
我们先看看第⼀一种情况：

如果                   公式右边相除要达到10^{32}⇤ ⇠ Mplank

如果我们的理理论(SM?), 在
能标Lambda下也成⽴立

Huge!!!

m2
phys = m2

0 + c⇤2 + ...

Higgs真空期望值对
于量量⼦子辐射修正⼤大
⼤大的不不稳定



电⼦子质量量的启示

如果我们不不能扔很多个这种铅笔的话（⼈人择原理理）

事实上对称性能够保证（Higgs势能）
对于量量⼦子辐射修正的稳定性

电⼦子质量量项
线性发散



电⼦子质量量的启示

Chiral symmetry

量量⼦子涨落引⼊入了了正电⼦子

忽略略质量量的情况下，电⼦子正电⼦子满⾜足

Lambda取Plank质量量，修正项只有10% 



有关Higgs的对称性

超对称

⼿手证对称性： 电⼦子 正电⼦子

波⾊色⼦子 费⽶米⼦子



超对称性

完整的SUSY RGE

负数

SUSY中的质量量起源

GUT能标下的初条件？

微⼩小的量量⼦子辐射修正



已知未知对⽐比

电⼦子质量量

No New Physics

GUT scale

a large physics desert

SUSY particles
正电⼦子

⼿手征对称性



Pi介⼦子质量量的启示

QCD

Pi介⼦子是pNGB 通过破坏QCD的味道对称性获得质量量



Higgs粒⼦子的复合性?

可能的新物理理偏移

到新物理理能标下，我们才能看
⻅见复合Higgs的结构（类似QCD 

Pi介⼦子形状因⼦子的偏移）

Higgs粒⼦子是可分
的，类似Pi介⼦子

新的层⼦子模型的时代？



未来Higgs精确测量量

CEPC



Higgs as a pNGB



Higgs作为pNGB

为什什么考虑这种情况？

Higgs质量量相对于Higgs结构能标（1~10TeV) 很低

Higgs势能的起源 (The origin of EWSB)

⼀一般性的普适结构 (universal prediction)(Like soft 
pion theorem)

全局对称性G⾃自发破缺到H, 会有⽆无质量量的波⾊色⼦子
(NGB)在培集空间中(coset space), 如果G有直接

破缺的效应, NGB将获得⼩小的质量量

以前电⼦子对撞机的实验限制

如果G⾃自发破缺到H是新的禁闭的强作⽤用，pNGB是个复合粒⼦子

QCD⼿手证对称性破缺，pi介⼦子



Higgs势能起源

h

V(h)
Pi介⼦子没有真空期望值

只有正的质量量项

Higgs势能可能的源：

复合Higgs中基本部分⼦子的质量量

SM粒⼦子的（主要是Top夸克的）量量⼦子辐射修
正（圈图效应）？ 以后讨论focus在top sector



Higgs as pNGB
Minimal Composite Higgs Model (MCHM)

E

-   Λ

-   f SO(5)/SO(4)

Loop corrections of elementary SM fields, will generate a 
potential for the modulus of the NGB 4-vector, which 
will get a vev:             . 

vacuum is arbitrary and one can suitably set � = 0 (so that SO(4)� = SO(4)). With this
choice, the four NG bosons of SO(5)/SO(4) transform as a a complex doublet of the gauged
SU(2)L, and none of them is eaten. Loop corrections will however generate a potential for
the NG bosons and can lead to a non-vanishing vev for the modulus of the NG 4-vector:
⌃⇥⌥ ⇧= 0 (see Fig. 1). As a result, SO(4) is spontaneously broken to (a custodial) SO(3), and
three of the original NG bosons are eaten. The field ⇤ can be recast in the form of eq.(12)
by identifying � = ⌃⇥⌥/f and the field h(x) as the fluctuation of the modulus of the NG
4-vector around its vev. One can thus think of the electroweak symmetry breaking as a two-
step process: a first spontaneous breaking, SO(5) ⌅ SO(4), occurs at the scale f , giving
rise to an SU(2)L doublet of NG bosons; at a lower scale v = f sin(⌃⇥⌥/f) ⇥ f sin � the
electroweak symmetry is spontaneously broken, SO(4) ⌅ SO(3), leaving an approximate
custodial symmetry.

A simple way to derive the SO(5)/SO(4) chiral lagrangian at O(p2) is by adopting the
basis of fields {⌅i, h} and making use eq.(12). One has (see Appendix C):

L(2) =
f 2

2
(Dµ⇤)

T (Dµ⇤)

=
1

2
(⇧µh)

2 +
f 2

4
Tr

⇤
(Dµ⇥)

†(Dµ⇥)
⌅
sin2

⇧
� +

h(x)

f

⌃
,

(14)

where ⇥ ⇥ exp(i⇤i⌅i/v), and ⇤i are the Pauli matrices. No covariant derivative acts on h,
as one could have anticipated by noticing that the fluctuations parametrized by this field
are SO(4)�-invariant. Choosing the unitary gauge, ⇥ = 1, and expanding around �, one
immediately finds the relation m2

W = (g2f 2 sin2 �)/4, which determines the value of the
electroweak scale v = f sin �, and the value of the Higgs couplings to the vector bosons.

The same expression for L(2) can be obtained by using the CCWZ formalism. At the
level of two derivatives, there is only one operator which can be formed:

L(2) =
f 2

4
Tr[dµd

µ] . (15)

The equivalence with eq.(14) is proved in Appendix C, but it can be quickly checked, for
example, by monitoring the mass terms for the vector bosons. In the case of eq.(15) these
arise from the component of the gauge fields along the broken generators contained in dµ.
From eq.(1) and (9), after setting �(x) =

�
2T â(�)⇥â(x)/f , one finds:

dâµ = Aâ
µ +

�
2

f
(Dµ⇥)

â +O(⇥3) (16)

Ea
µ = Aa

µ �
i

f 2

�
⇥
⇤⌅
Dµ⇥

⇥a
+O(⇥4) . (17)
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob
represents the strong dynamics encoded by the form factor �1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the
composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the
smaller correction from hypercharge. The contribution from fermions will be derived
in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams
in Fig. 7. From the e⇤ective action (48), after the addition of the gauge-fixing term

LGF = � 1

2g2�

�
⇤µAaL

µ

⇥2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:

Gµ� =
i

⇥0(q2)
(PT )µ� � �

ig2

q2
(PL)µ�

i�µ� =
i⇥1(q2)

4
sin2(h/f)(PT )µ�

where (PL)µ� = qµq�/q2 is the longitudinal projector. Resumming the series of 1-loop
diagrams of Fig. 7 then leads to the potential:

V (h) =
9

2

⇧
d4Q

(2⇥)4
log

⇤
1 +

1

4

⇥1(Q2)

⇥0(Q2)
sin2(h/f)

⌅
(59)

where Q2 = �q2 is the Euclidean momentum. The factor 9 originates from the sum
over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and
on the convergence of the integral. We have seen that ⇥0 is related to the product of
two SO(4) currents

⇥Ja
µ(q)J

a
� (�q)⇤ = ⇥0(q

2)(PT )µ� (60)

where, we recall, the notation ⇥O1O2⇤ denotes the vacuum expectation of the time-
ordered product of the operators O1 and O2. The form factor ⇥1, on the other hand,

24

At tree level one can set # = 0  $  SO(4)’= SO(4)

-  v = f sin("π#/f)
SO(4)/SO(3)

This generates a vacuum misalignment as  # = "π#/f .

EWSB arises from vacuum misalignment. 

All the explicit breaking of SO(5) comes from the
SM gauging and fermions

sabato 29 ottobre 2011

Consider the minimal group G/H

SO(5) SO(4) ⇥ SU(2)L � SU(2)R SU(2)L � U(1)Y f > v (0.1)

1

at the scale          .

To have a naturally light Higgs, we can assume it to emerge as a pseudo NGB from the 
spontaneous breaking of a bigger global symmetry of a strongly interacting sector:

⇤⇥(x) = (⇥1, ⇥2, ⇥3, ⇥4)⌅⇧ H(x) =
1⌥
2
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1

Minimal Composite Higgs Model (MCHM)

variables that transform as representations of the local symmetryH) can thus be constructed
from the field strength of the external gauge fields as follows:

fµ⇥ = U †Fµ⇥U = (f�
µ⇥)

âT â + (f+
µ⇥)

aT a ⇤ f�
µ⇥ + f+

µ⇥

f±
µ⇥(�) ⌃ h(�, g) f±

µ⇥(�)h
†(�, g) .

(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
constructed by means of the CCWZ covariant variables defined above. In this case there are
four NG bosons associated to the breaking SO(5) ⌃ SO(4), ⇥â with â = 1, 2, 3, 4, which live
on the four-sphere (SO(5)/SO(4) = S4). They transform as a 4 of SO(4), or equivalently
as a (2,2) of SU(2)⇥SU(2) ⌅ SO(4). The SM electroweak vector bosons gauge a subgroup
SU(2)L ⇥ U(1)Y ⇧ SU(2)L ⇥ SU(2)R ⌅ SO(4)⇥ contained in SO(5), such that Y = T3R. 3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)⇥ (i.e. that which contains
the SM group SU(2)L ⇥ U(1)Y ) with respect to the linearly-realized global SO(4) by an
angle �. For example, by representing the vacuum as a 5-dimensional unit vector ⇥0, and
letting the gauged SO(4)⇥ act on the first four entries, one has ⇥0 = (0, 0, 0, sin �, cos �). The
gauged SO(4)⇥ thus identifies a preferred direction inside SO(5), and the angle � precisely
measures the misalignment of the vacuum with respect to it, see Fig. 1. The field

⇥ = U(x)⇥0 = ei
⇤
2T â(�)⇤â(x)/f⇥0 =

�

⇧⇧⇧⇧⇧⇤

⇥̂1 sin(⇥/f)

⇥̂2 sin(⇥/f)

⇥̂3 sin(⇥/f)

⇥̂4 sin(⇥/f) cos � + cos(⇥/f) sin �

�⇥̂4 sin(⇥/f) sin � + cos(⇥/f) cos �

⇥

⌃⌃⌃⌃⌃⌅
(11)

parametrizes the massless excitations around the vacuum, where we have defined ⇥ =
⌥
(⇥â)2

and ⇥̂â = ⇥â/⇥. 4 Here and in the following we denote the generators of SO(5) ⌃ SO(4) as
T a,â = T a,â(�), which are related to those of SO(5) ⌃ SO(4)⇥, where SO(4)⇥ is the gauged
subgroup, by a rotation of an angle �, see Appendix A.

For � = 0 the SM electroweak group is unbroken, being contained in the preserved global
SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
�
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

There are four NGBs:       , with                    .
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They transform as a 4 of SO(4), or a (2,2) of SU(2) x SU(2) ~ SO(4).
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gauged SO(4)!
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
exp(i⌅i(x)Ai/v), where Ai are SO(4)�/SO(3) generators. Considering that ||�|| = 1 implies
⇤4 ⌅ 1, and that in the vacuum ⌃⇤4⌥ = sin �, it is convenient to define ⇤4(x) ⇤ sin(�+h(x)/f).
Hence,

� =

�

⇧⇧⇧⇧⇤
sin(� + h(x)/f) ei�

i(x)Ai/v

�

⇧⇧⇤

0
0
0
1

⇥

⌃⌃⌅

cos(� + h(x)/f)

⇥

⌃⌃⌃⌃⌅
. (12)

By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four
NG bosons of SO(5)/SO(4), ⇥â, and the ‘physical’ degrees of freedom, ⌅i, h:
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(⌅i)2, ⌅̂i ⇤ ⌅i/⌅.

In realistic models, the value of � is dynamically determined, and the breaking of the
electroweak symmetry can be seen as the result of a vacuum misalignment. Another point
of view, however, is possible and sometimes useful. If all the explicit breaking of the global
SO(5) comes from the SU(2)L ⇥ U(1)Y external gauging and from the couplings of other
elementary fields (in particular the SM fermions), then at tree level the orientation of the
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2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
constructed by means of the CCWZ covariant variables defined above. In this case there are
four NG bosons associated to the breaking SO(5) ⌃ SO(4), ⇥â with â = 1, 2, 3, 4, which live
on the four-sphere (SO(5)/SO(4) = S4). They transform as a 4 of SO(4), or equivalently
as a (2,2) of SU(2)⇥SU(2) ⌅ SO(4). The SM electroweak vector bosons gauge a subgroup
SU(2)L ⇥ U(1)Y ⇧ SU(2)L ⇥ SU(2)R ⌅ SO(4)⇥ contained in SO(5), such that Y = T3R. 3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)⇥ (i.e. that which contains
the SM group SU(2)L ⇥ U(1)Y ) with respect to the linearly-realized global SO(4) by an
angle �. For example, by representing the vacuum as a 5-dimensional unit vector ⇥0, and
letting the gauged SO(4)⇥ act on the first four entries, one has ⇥0 = (0, 0, 0, sin �, cos �). The
gauged SO(4)⇥ thus identifies a preferred direction inside SO(5), and the angle � precisely
measures the misalignment of the vacuum with respect to it, see Fig. 1. The field
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2T â(�)⇤â(x)/f⇥0 =

�

⇧⇧⇧⇧⇧⇤

⇥̂1 sin(⇥/f)

⇥̂2 sin(⇥/f)

⇥̂3 sin(⇥/f)

⇥̂4 sin(⇥/f) cos � + cos(⇥/f) sin �

�⇥̂4 sin(⇥/f) sin � + cos(⇥/f) cos �

⇥

⌃⌃⌃⌃⌃⌅
(11)

parametrizes the massless excitations around the vacuum, where we have defined ⇥ =
⌥
(⇥â)2

and ⇥̂â = ⇥â/⇥. 4 Here and in the following we denote the generators of SO(5) ⌃ SO(4) as
T a,â = T a,â(�), which are related to those of SO(5) ⌃ SO(4)⇥, where SO(4)⇥ is the gauged
subgroup, by a rotation of an angle �, see Appendix A.

For � = 0 the SM electroweak group is unbroken, being contained in the preserved global
SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
�
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

The hypercharge is defined as

In the following we will neglect the additional 
U(1)X as the NGB are neutral.
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Minimal Composite Higgs Model (MCHM)

variables that transform as representations of the local symmetryH) can thus be constructed
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letting the gauged SO(4)⇥ act on the first four entries, one has ⇥0 = (0, 0, 0, sin �, cos �). The
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so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
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By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
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To have a naturally light Higgs, we can assume it to emerge as a pseudo NGB from the 
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variables that transform as representations of the local symmetryH) can thus be constructed
from the field strength of the external gauge fields as follows:
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2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
constructed by means of the CCWZ covariant variables defined above. In this case there are
four NG bosons associated to the breaking SO(5) ⌃ SO(4), ⇥â with â = 1, 2, 3, 4, which live
on the four-sphere (SO(5)/SO(4) = S4). They transform as a 4 of SO(4), or equivalently
as a (2,2) of SU(2)⇥SU(2) ⌅ SO(4). The SM electroweak vector bosons gauge a subgroup
SU(2)L ⇥ U(1)Y ⇧ SU(2)L ⇥ SU(2)R ⌅ SO(4)⇥ contained in SO(5), such that Y = T3R. 3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)⇥ (i.e. that which contains
the SM group SU(2)L ⇥ U(1)Y ) with respect to the linearly-realized global SO(4) by an
angle �. For example, by representing the vacuum as a 5-dimensional unit vector ⇥0, and
letting the gauged SO(4)⇥ act on the first four entries, one has ⇥0 = (0, 0, 0, sin �, cos �). The
gauged SO(4)⇥ thus identifies a preferred direction inside SO(5), and the angle � precisely
measures the misalignment of the vacuum with respect to it, see Fig. 1. The field
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parametrizes the massless excitations around the vacuum, where we have defined ⇥ =
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and ⇥̂â = ⇥â/⇥. 4 Here and in the following we denote the generators of SO(5) ⌃ SO(4) as
T a,â = T a,â(�), which are related to those of SO(5) ⌃ SO(4)⇥, where SO(4)⇥ is the gauged
subgroup, by a rotation of an angle �, see Appendix A.

For � = 0 the SM electroweak group is unbroken, being contained in the preserved global
SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
�
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .
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(⇥â)2
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
exp(i⌅i(x)Ai/v), where Ai are SO(4)�/SO(3) generators. Considering that ||�|| = 1 implies
⇤4 ⌅ 1, and that in the vacuum ⌃⇤4⌥ = sin �, it is convenient to define ⇤4(x) ⇤ sin(�+h(x)/f).
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By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four
NG bosons of SO(5)/SO(4), ⇥â, and the ‘physical’ degrees of freedom, ⌅i, h:

sin(� + h(x)/f) ⌅̂i(x) sin(⌅(x)/v) = ⇥̂i(x) sin(⇥(x)/f), i = 1, 2, 3

cos(� + h(x)/f) = cos(⇥(x)/f) cos � � ⇥̂4(x) sin(⇥(x)/f) sin � ,
(13)

where ⌅ ⇤
⌥
(⌅i)2, ⌅̂i ⇤ ⌅i/⌅.

In realistic models, the value of � is dynamically determined, and the breaking of the
electroweak symmetry can be seen as the result of a vacuum misalignment. Another point
of view, however, is possible and sometimes useful. If all the explicit breaking of the global
SO(5) comes from the SU(2)L ⇥ U(1)Y external gauging and from the couplings of other
elementary fields (in particular the SM fermions), then at tree level the orientation of the
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âT â + (f+
µ⇥)

aT a ⇤ f�
µ⇥ + f+

µ⇥

f±
µ⇥(�) ⌃ h(�, g) f±

µ⇥(�)h
†(�, g) .

(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
constructed by means of the CCWZ covariant variables defined above. In this case there are
four NG bosons associated to the breaking SO(5) ⌃ SO(4), ⇥â with â = 1, 2, 3, 4, which live
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
exp(i⌅i(x)Ai/v), where Ai are SO(4)�/SO(3) generators. Considering that ||�|| = 1 implies
⇤4 ⌅ 1, and that in the vacuum ⌃⇤4⌥ = sin �, it is convenient to define ⇤4(x) ⇤ sin(�+h(x)/f).
Hence,

� =

�

⇧⇧⇧⇧⇤
sin(� + h(x)/f) ei�

i(x)Ai/v

�

⇧⇧⇤

0
0
0
1

⇥

⌃⌃⌅

cos(� + h(x)/f)

⇥

⌃⌃⌃⌃⌅
. (12)
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2T â(�)⇤â(x)/f⇥0 =

�

⇧⇧⇧⇧⇧⇤

⇥̂1 sin(⇥/f)

⇥̂2 sin(⇥/f)

⇥̂3 sin(⇥/f)

⇥̂4 sin(⇥/f) cos � + cos(⇥/f) sin �

�⇥̂4 sin(⇥/f) sin � + cos(⇥/f) cos �

⇥

⌃⌃⌃⌃⌃⌅
(11)

parametrizes the massless excitations around the vacuum, where we have defined ⇥ =
⌥
(⇥â)2
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on the four-sphere (SO(5)/SO(4) = S4). They transform as a 4 of SO(4), or equivalently
as a (2,2) of SU(2)⇥SU(2) ⌅ SO(4). The SM electroweak vector bosons gauge a subgroup
SU(2)L ⇥ U(1)Y ⇧ SU(2)L ⇥ SU(2)R ⌅ SO(4)⇥ contained in SO(5), such that Y = T3R. 3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)⇥ (i.e. that which contains
the SM group SU(2)L ⇥ U(1)Y ) with respect to the linearly-realized global SO(4) by an
angle �. For example, by representing the vacuum as a 5-dimensional unit vector ⇥0, and
letting the gauged SO(4)⇥ act on the first four entries, one has ⇥0 = (0, 0, 0, sin �, cos �). The
gauged SO(4)⇥ thus identifies a preferred direction inside SO(5), and the angle � precisely
measures the misalignment of the vacuum with respect to it, see Fig. 1. The field

⇥ = U(x)⇥0 = ei
⇤
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T a,â = T a,â(�), which are related to those of SO(5) ⌃ SO(4)⇥, where SO(4)⇥ is the gauged
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For � = 0 the SM electroweak group is unbroken, being contained in the preserved global
SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
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2 in the exponent of eq.(11) has been introduced to match the standard normalization
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
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By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four
NG bosons of SO(5)/SO(4), ⇥â, and the ‘physical’ degrees of freedom, ⌅i, h:
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In realistic models, the value of � is dynamically determined, and the breaking of the

electroweak symmetry can be seen as the result of a vacuum misalignment. Another point
of view, however, is possible and sometimes useful. If all the explicit breaking of the global
SO(5) comes from the SU(2)L ⇥ U(1)Y external gauging and from the couplings of other
elementary fields (in particular the SM fermions), then at tree level the orientation of the
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hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
�
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

The hypercharge is defined as

In the following we will neglect the additional 
U(1)X as the NGB are neutral.

sabato 29 ottobre 2011

SO(5) SO(4) ⇥ SU(2)L � SU(2)R SU(2)L � U(1)Y f > v (0.1)

1

at the scale          .

To have a naturally light Higgs, we can assume it to emerge as a pseudo NGB from the 
spontaneous breaking of a bigger global symmetry of a strongly interacting sector:

⇤⇥(x) = (⇥1, ⇥2, ⇥3, ⇥4)⌅⇧ H(x) =
1⌥
2

�
⇥1 + i⇥2

⇥3 + i⇥4

⇥
(1)

GEW = SU(2)L � U(1)Y ⌃= U(1)Q (2)

A(s, t, u) =
s

f2
= �

s

v2
, � ⇥ v2

f2
(3)

� ⇤ 4⇥f (4)

1

Minimal Composite Higgs Model (MCHM)

variables that transform as representations of the local symmetryH) can thus be constructed
from the field strength of the external gauge fields as follows:

fµ⇥ = U †Fµ⇥U = (f�
µ⇥)
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SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
exp(i⌅i(x)Ai/v), where Ai are SO(4)�/SO(3) generators. Considering that ||�|| = 1 implies
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By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
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gauged SO(4)⇥ thus identifies a preferred direction inside SO(5), and the angle � precisely
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parametrizes the massless excitations around the vacuum, where we have defined ⇥ =
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(⇥â)2

and ⇥̂â = ⇥â/⇥. 4 Here and in the following we denote the generators of SO(5) ⌃ SO(4) as
T a,â = T a,â(�), which are related to those of SO(5) ⌃ SO(4)⇥, where SO(4)⇥ is the gauged
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For � = 0 the SM electroweak group is unbroken, being contained in the preserved global
SO(4), and the four NG bosons form a complex doublet of SU(2)L. For � ⌥= 0, on the other
hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
SO(4)⇥ acts on the first four entries of the field ⇥ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.
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adopted in the literature. It can be absorbed by a redefinition of f .
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In the following we will neglect the additional 
U(1)X as the NGB are neutral.
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âT â + (f+
µ⇥)

aT a ⇤ f�
µ⇥ + f+

µ⇥

f±
µ⇥(�) ⌃ h(�, g) f±

µ⇥(�)h
†(�, g) .

(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
constructed by means of the CCWZ covariant variables defined above. In this case there are
four NG bosons associated to the breaking SO(5) ⌃ SO(4), ⇥â with â = 1, 2, 3, 4, which live
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3In realistic models there is a larger pattern of global symmetries, SO(5)⇥U(1)X ⌃ SO(4)⇥U(1)X , and
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle � with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment �. Even assuming no misalignment at the tree
level, a non-vanishing � = ⌃⇥⌥/f is generated at the loop level after the NG 4-vector acquires a vev
⌃⇥⌥ ⇧= 0 (black curve).

rewritten as a modulus, ⇤4, times a unit 4-vector. The unit vector can in turn be expressed
as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase
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By construction, the three ⌅i are the fields eaten after the SU(2)L⇥U(1)Y external gauging
is turned on, while h, which parametrizes SO(4)�-invariant fluctuations around the vacuum �,
remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four
NG bosons of SO(5)/SO(4), ⇥â, and the ‘physical’ degrees of freedom, ⌅i, h:

sin(� + h(x)/f) ⌅̂i(x) sin(⌅(x)/v) = ⇥̂i(x) sin(⇥(x)/f), i = 1, 2, 3

cos(� + h(x)/f) = cos(⇥(x)/f) cos � � ⇥̂4(x) sin(⇥(x)/f) sin � ,
(13)

where ⌅ ⇤
⌥
(⌅i)2, ⌅̂i ⇤ ⌅i/⌅.

In realistic models, the value of � is dynamically determined, and the breaking of the
electroweak symmetry can be seen as the result of a vacuum misalignment. Another point
of view, however, is possible and sometimes useful. If all the explicit breaking of the global
SO(5) comes from the SU(2)L ⇥ U(1)Y external gauging and from the couplings of other
elementary fields (in particular the SM fermions), then at tree level the orientation of the
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Goldstone Lag

Consider the most general Goldstone interaction 
which has a custodial symmetry
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Higgs physics

Starting from eq.(48) it is simple to derive the couplings of the physical Higgs boson
to the gauge fields. By expanding around the vev ⇧h⌃,

hâ =
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0
0

⇧h⌃+ h
0

⌃

⌦⌦� , (54)

one has
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1� � h+ (1� 2�)h2 + . . .

(55)

where, with a slight abuse of notation, h stands for
⌥
hâhâ on the left hand side, while

it denotes the physical Higgs boson on the right hand side. Compared to their SM
prediction, the couplings of the composite Higgs to the gauge bosons V = W,Z are
thus modified as follows:

gV V h = gSMV V h

↵
1� � , gV V hh = gSMV V hh(1� 2�) . (56)

If one compares with the e⇥ective Lagrangian for a generic scalar eq.(16), one finds
that the SO(5)/SO(4) theory predicts

a =
↵
1� � , b = 1� 2� . (57)

Using the results of section 2.1 on theWW scattering, we deduce that both theWW ⌅
WW and WW ⌅ hh scattering amplitudes grow as ⇥ (E/v)2� at large energies,
violating perturbative unitarity at a scale � ⇤ 4⇥v/

⌥
�. This is a factor

⌥
� larger

than what we found for a theory with no Higgs.
We see that the composite Higgs only partly unitarizes the scattering amplitudes,

simply postponing the loss of perturbative unitarity to larger scales. In the limit � ⌅ 0
(with v fixed) one recovers the standard Higgs model: the resonances of the strong
sector become infinitely heavy and decouple, while the Higgs boson fully unitarizes the
theory. For � ⌅ 1, on the other hand, the Higgs contribution vanishes and unitarity
in WW ⌅ WW scattering is enforced solely by the strong resonances. Furthermore,
f = v and there is no gap of scales in theory: in this limit the strong dynamics behaves
quite similarly to a minimal Technicolor theory, although a light scalar exists in the
spectrum. In the general case, for � small enough the strong resonances can be made
su⌅ciently heavy and their correction to the electroweak observables su⌅ciently small
to pass the LEP precision tests. We will illustrate this point in detail later on, in

23

W boson mass

modification of hVV 
coupling 

Similarly for fermions.

Since the W boson mass mW = g2v2/4 = g2h2 sin2(h/f)/4 in our model, there is vaccue shifted
e⇥ect here which would account for the overall normalization of the higgs bosons ((cH contribution
in the SILH Lagrangian [12])). Therefore, sin(h/f) ⇥ v/f and the e⇥ective ggh coupling ratio is

gMCHM
ggh

gSMggh

=
cos(2h/f)

cos(h/f)
=

(1� 2⇥)�
1� ⇥

, (152)

where ⇥ = (v/f)2 = sin2 ⇧h⌃/f . Therefore, we have the production rate ratio [13]

⇤MCHM5(gg ⇥ h)

⇤SM (gg ⇥ h)
=

(1� 2⇥)2

1� ⇥
, (153)

which agrees with Ref. ( [11,13]) in our setup with top partners.
Now we go to the case of model 10 (type one), in this case, the fermions are embedded according

to Eq. (67), then we have the following top mass matrix in the basis (t, Q�+, Q+,�,⌅0,⇧0)

Mt =
1

2

⌥

↵↵↵↵ 

0 c⇥Q(1� cos(h/f)) c⇥Q(1 + cos(h/f)) �c⇥T sin(h/f) c⇥T sin(h/f)
�cQ sin(h/f) m̃Q 0 0 0
cQ sin(h/f) 0 m̃Q 0 0

cT (1 + cos(h/f)) 0 0 m̃T 0
cT (1� cos(h/f)) 0 0 0 m̃T

�

����⌦
PR + h.c.(154)

and the determinant of the top mass matrix is

Det(Mt) =
1

32
M̃QM̃T

�
m̃Q|cT |2 � m̃T |cQ|2

⇥
sin(2h/f) (155)

Therefore, the production rate would be the same as Eq. (153) in model 5.

10.2 Constrain on Higgs production at the LEP and LHC

In the unitarity gauge where � = (sinh/f, 0, 0, 0, cosh/f), the leading order Goldstone interaction
in Eq. (3) give us the higgs gauge interactions

LKin =
1

2
 µh 

µh+m2
W (h)

⇧
WµW

µ +
1

2 cos2 �W
ZµZ

µ

⌃
with mW =

gf

2
sin

h

f
. (156)

Expanding Eq. (156) in powers of the Higgs field, we obtain the Higgs couplings to the gauge fields

gHV V = gSM
HV V

�
1� ⇥ . (157)

Similarly, in the model 5, where SM fermions transforming as fundamental representations of SO(5),
the interactions of the Higgs to the fermions take the following form

LYuk = �mf (h)f̄f with mf (h) ⇤ sin

⇤
2h

f

⌅
. (158)

We then obtain

gHff = gSM
Hff

1� 2⇥�
1� ⇥

. (159)
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a =
p
1� � b = 1� 2�

c =
p
1� �

c = 1�2⇠p
1�⇠ 5, 10

Spinorial 4mf (h) / sin

✓
h

f

◆



Higgs fits

P. Giardino, et al, arxiv: 1303.3570
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f ! fmin

!
!
!
SM

T"PARITY

Custodial LH

Little Higgs

MCHM

FIG. 7: The predicted gluon fusion production rates from various composite Higgs models considered

in this work. The fmin, defined as the smallest value allowed by precision electroweak constriants,

are: 1.2 TeV (littlest Higgs), 500 GeV (T-parity), 700 GeV (custodial littlest Higgs), and 500 GeV

(MCHM).

this work. We plot the predicted rate over the SM expectation versus the decay constant f

in unit of fmin, which is defined as the smallest value allowed by the precision electroweak

constraint. We choose fmin = 1.2 TeV, 500 GeV, 700 GeV, and 500 GeV for the littlest

Higgs, the T-parity model, the custodial littlest Higgs, and the MCHM, respectively. The

reduction is substantial across a wide range of f .

Last but not the least, we would like to comment on the effect of higher order QCD

corrections, as they are known to be quite large in the particular channel of gluon fusion

production [5]. The important observation here is that the strategy of integrating out the

heavy colored particles by assuming their masses are much larger than that of the Higgs is

validated at the level of NNLO QCD corrections [46]. Since in models we considered so far

the top partners have the same SU(3)c quantum number as the SM top quark, we speculate

that the QCD corrections in the case of integrating out the top partners should be similar to

that from integrating out the SM top quark. As such, the higher order QCD effects should

factor out of the effects due to the composite nature of the Higgs. Needless to say, this is

an important question deserving further studies, which is nonetheless beyond the scope of

the current work.
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Suppressed 
production rate Overall Higgs fit ⇠ < 0.2



Picture of CHMs

SM

Spin one: rho, axi-rho, etc

Global symmetry breaking 
pattern (G/H)

Elementary Composite 

Strong dynamics

Spin 1/2: composite fermions

W/Z

Top, b, tau, etc

Explicitly break G: source 
of higgs potential

mixture

mixture

The mixture measures how composite the light states are 



Spin-one ResonancesMinimal Composite Higgs Model (MCHM)

E

-   Λ

-   f SO(5)/SO(4)

Loop corrections of elementary SM fields, will generate a 
potential for the modulus of the NGB 4-vector, which 
will get a vev:             . 

vacuum is arbitrary and one can suitably set � = 0 (so that SO(4)� = SO(4)). With this
choice, the four NG bosons of SO(5)/SO(4) transform as a a complex doublet of the gauged
SU(2)L, and none of them is eaten. Loop corrections will however generate a potential for
the NG bosons and can lead to a non-vanishing vev for the modulus of the NG 4-vector:
⌃⇥⌥ ⇧= 0 (see Fig. 1). As a result, SO(4) is spontaneously broken to (a custodial) SO(3), and
three of the original NG bosons are eaten. The field ⇤ can be recast in the form of eq.(12)
by identifying � = ⌃⇥⌥/f and the field h(x) as the fluctuation of the modulus of the NG
4-vector around its vev. One can thus think of the electroweak symmetry breaking as a two-
step process: a first spontaneous breaking, SO(5) ⌅ SO(4), occurs at the scale f , giving
rise to an SU(2)L doublet of NG bosons; at a lower scale v = f sin(⌃⇥⌥/f) ⇥ f sin � the
electroweak symmetry is spontaneously broken, SO(4) ⌅ SO(3), leaving an approximate
custodial symmetry.

A simple way to derive the SO(5)/SO(4) chiral lagrangian at O(p2) is by adopting the
basis of fields {⌅i, h} and making use eq.(12). One has (see Appendix C):

L(2) =
f 2

2
(Dµ⇤)

T (Dµ⇤)

=
1

2
(⇧µh)

2 +
f 2

4
Tr

⇤
(Dµ⇥)

†(Dµ⇥)
⌅
sin2

⇧
� +

h(x)

f

⌃
,

(14)

where ⇥ ⇥ exp(i⇤i⌅i/v), and ⇤i are the Pauli matrices. No covariant derivative acts on h,
as one could have anticipated by noticing that the fluctuations parametrized by this field
are SO(4)�-invariant. Choosing the unitary gauge, ⇥ = 1, and expanding around �, one
immediately finds the relation m2

W = (g2f 2 sin2 �)/4, which determines the value of the
electroweak scale v = f sin �, and the value of the Higgs couplings to the vector bosons.

The same expression for L(2) can be obtained by using the CCWZ formalism. At the
level of two derivatives, there is only one operator which can be formed:

L(2) =
f 2

4
Tr[dµd

µ] . (15)

The equivalence with eq.(14) is proved in Appendix C, but it can be quickly checked, for
example, by monitoring the mass terms for the vector bosons. In the case of eq.(15) these
arise from the component of the gauge fields along the broken generators contained in dµ.
From eq.(1) and (9), after setting �(x) =

�
2T â(�)⇥â(x)/f , one finds:

dâµ = Aâ
µ +

�
2

f
(Dµ⇥)

â +O(⇥3) (16)

Ea
µ = Aa

µ �
i

f 2

�
⇥
⇤⌅
Dµ⇥

⇥a
+O(⇥4) . (17)

5

+ + + · · ·

Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob
represents the strong dynamics encoded by the form factor �1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the
composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the
smaller correction from hypercharge. The contribution from fermions will be derived
in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams
in Fig. 7. From the e⇤ective action (48), after the addition of the gauge-fixing term

LGF = � 1

2g2�

�
⇤µAaL

µ

⇥2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:

Gµ� =
i

⇥0(q2)
(PT )µ� � �

ig2

q2
(PL)µ�

i�µ� =
i⇥1(q2)

4
sin2(h/f)(PT )µ�

where (PL)µ� = qµq�/q2 is the longitudinal projector. Resumming the series of 1-loop
diagrams of Fig. 7 then leads to the potential:

V (h) =
9

2

⇧
d4Q

(2⇥)4
log

⇤
1 +

1

4

⇥1(Q2)

⇥0(Q2)
sin2(h/f)

⌅
(59)

where Q2 = �q2 is the Euclidean momentum. The factor 9 originates from the sum
over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and
on the convergence of the integral. We have seen that ⇥0 is related to the product of
two SO(4) currents

⇥Ja
µ(q)J

a
� (�q)⇤ = ⇥0(q

2)(PT )µ� (60)

where, we recall, the notation ⇥O1O2⇤ denotes the vacuum expectation of the time-
ordered product of the operators O1 and O2. The form factor ⇥1, on the other hand,
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At tree level one can set # = 0  $  SO(4)’= SO(4)

-  v = f sin("π#/f)
SO(4)/SO(3)

This generates a vacuum misalignment as  # = "π#/f .

EWSB arises from vacuum misalignment. 

All the explicit breaking of SO(5) comes from the
SM gauging and fermions

sabato 29 ottobre 2011

strong but perturbative

The theory make sense up to  � = 4 ⇡ f

We assume that a given number of resonances in 
the composite sector are lighter than    so that it 

appears in the effective action.
⇤

``Vector Resonances” ``Axial Resonances”

1 ⌧ g�, ga ⌧ 4 �

Consider Spin-1 resonances in the                            .             
representation

SU(2)L ⇥ SU(2)R

�L: (3,1) �R: (1,3) a: (2,2)



Spin 1/2 Resonances

There are many ways to generate the fermion masses

Here we only consider the “partial compositeness”

Good for 
flavor physics

Linear mixing: 

Maximally suppressed 
the FCNC by the 

small fermion mass

L
mix

= �q̄
i

O
i

Oi � U i Composite operators 

 i
Composite fermions sit in the 

representation of SO(4)
Qj Sibi-doublet Singlet

Bilinear: L = �q̄q��̄�⇥ techicolor, conformal techicolor, etc



Higgs势能起源

h

V(h)
Pi介⼦子没有真空期望值

只有正的质量量项

Higgs势能可能的源：

复合Higgs中基本部分⼦子的质量量

SM粒⼦子的（主要是Top夸克的）量量⼦子辐射修
正（圈图效应）？ 以后讨论focus在top sector



电弱对称破缺机制⼆二
辐射修正Higgs 势能:

Top 夸克质量量

After canonically normalize the top field, one can compute the top mass from the zero of the
propagator:

m2
t �M2

t (m
2
t , ⌅h⇧) = 0, (55)

where

M2
t (q

2, ⌅h⇧) =
⇤⇤⇥tLtR

�
q2, ⌅h⇧

⇥⇤⇤
◆
⇥tL (q2, ⌅h⇧)⇥tR (q2, ⌅h⇧)

. (56)

Expanding for small momenta, we can obtain an approximated expression for the mass:

m2
t ⇤

M2
t (0, ⌅h⇧)

1�M2⇥
t (0, ⌅h⇧)

. (57)

The Coleman Weinberg e⇤ective potential for the Higgs h that one obtains from this e⇤ective
Lagrangian is (after going to Euclidean momenta):

V (h) = �2Nc

ˆ
d4pE
(2�)4

log
⌅
p2E⇥tL(�p2E , h)⇥tR(�p2E , h) +

⇤⇤⇥tLtR(�p2E , h)
⇤⇤2
⇧
. (58)

Let us write explicitly the form factors in the Euclidean momenta:

�
✏�

✏�

⇥tL

�
�p2E , h

⇥
⇥ 1 +⇥L

�
Q2

⇥
��⇥L

�
Q2

⇥
sin2 h

f ,

⇥tR

�
�p2E , h

⇥
⇥ 1 +⇥R

�
Q2

⇥
+�⇥R

�
Q2

⇥
sin2 h

f ,

⇥tLtR

�
�p2E , h

⇥
⇥ �⇥LR

�
Q2

⇥
cos h

f sin h
f ,

(59)

where �
✏✏✏✏✏✏✏✏✏✏✏✏✏�

✏✏✏✏✏✏✏✏✏✏✏✏✏�

⇥R
�
Q2

⇥
=
⇣

n
|cnT |

2

Q2+(m̃n
T )

2 ,

⇥L
�
Q2

⇥
=
⇣

n
|cnqu |

2

Q2+(m̃n
u)

2 ,

�⇥L
�
Q2

⇥
= 1

2

⇣
n

⇤⇤cnqu
⇤⇤2
⌃

1
Q2+(m̃n

u)
2 � 1

Q2+(m̃n
T )

2

⌥
,

�⇥R
�
Q2

⇥
=
⇣

n |cnT |
2
⌃

1
Q2+(m̃n

u)
2 � 1

Q2+(m̃n
T )

2

⌥
,

�⇥LR
�
Q2

⇥
= 1⇤

2

⇣
n c

n
quc

n�
T

⌃
m̃n

u

Q2+(m̃n
u)

2 � m̃n
T

Q2+(m̃n
T )

2

⌥
.

(60)

3.3 Fermionic contribution to the Higgs potential

The fermionic contribution to the Higgs potential reads

V (h)ferm = �2Nc

ˆ
d4Q

(2�)4
log

⌘
Q2

�
1 +⇥L ��⇥Ls

2
h

⇥ �
1 +⇥R +�⇥Rs

2
h

⇥
+ |�⇥LR|2 s2hc2h

✓
=

= � Nc

8�2

ˆ �2

0
dQ2 Q2

�
log

⌃
1� �⇥L

1 +⇥L
s2h

⌥
+ log

⌃
1 +

�⇥R

1 +⇥R
s2h

⌥
+

+ log

 
1 +

|�⇥LR|2 s2hc2h
Q2

�
1 +⇥L ��⇥Ls2h

⇥ �
1 +⇥R +�⇥Rs2h

⇥
⌦↵

,

(61)
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费⽶米⼦子贡献

规范波⾊色⼦子贡献 



轻的Top伴随⼦子

mL < 900 GeV

数值扫描:

最轻的Top
伴随⼦子

双-⼆二重态 Q

单态 S

参数空间扫描

⇠ = 0.1

D. Marzocca, M. Serone, J.S, 
JHEP, 1208, (2012) 013

寻找轻的Top伴随⼦子



简单的理理解

125GeV的Higgs我们有Top伴随⼦子的质量量下限，
和模型混合⽆无关



Top 伴随⼦子的寻找

最新的constrain⼤大约
到了了1.1TeV左右



Maximally symmetric 
composite Higgs



新框架下突破
得到正确的电弱对称性破缺(v<<f)

得到正确的125 GeV Higgs质量量？

对⾼高能标下的物理理没有依赖，Higgs势能不不依赖
于cut off scale下的物理理

从最基本的群论出发，发现Higgs宇称的重要性，
提出⼀一套全新最简洁的研究问题的⽅方法 (linear 
realization in the symmetric coset space) 

完美的解决上⾯面的所以问题，发现⼀一种新的⾃自带
对称性 (Maximal symmetry)

我
做
了了
什什
么

⽅方法论突破

模型的突破
C. Csaki, T. Ma, J. Shu., in preparation

规范等级度的问题，精细调节



Symmetric space
对于任意全局G对称性破缺到H

Higgs 是NG粒⼦子，在G/H培集空间内

总是满⾜足 对称性培集空间

G群存在着⼀一个同构空间(automorphism)

Higgs是个负的Higgs宇称（和QCD⾥里里⾯面的pi宇称⼀一样）



对称性下的变化规律律
对于任意全局G对称性破缺到H，

NGB相互作⽤用形式

The CCWZ唯象表示

⽽而对于对称性培集空间

⾮非线性变换

线性变换 G/H信息包含在V⾥里里⾯面



费⽶米⼦子场相互作⽤用

Higgs势能项来源于
top圈图贡献

根据对称性写出的有效场(任何模型),不不同形状因⼦子的来源

最普实的top夸克和Higgs相互作⽤用

考虑最⼩小复合Higgs模型SO(5)/SO(4)
费⽶米⼦子在基础表示下

 ! g 
Master formular



Higgs势能项

Coleman-
Weinberg势

mt ⇠ sin2h Higgs势能项
Higgs的势能项对Higgs场的依赖就是top质量量依赖关系的平⽅方！

为0的话 左右⼿手top分别有 对称性

NGB矩阵在这个对称性下不不变

只有质量量项破缺了了这个对称性到

M t
1 ⇠ �L�Rf

2(MQ �MS)/p
2 V (h) ⇠ �2

L�
2
Rf

4(MQ �MS)
2/⇤2

top质量量是左右⼿手top分别和top伴随⼦子混合产⽣生的话 No UV Divergence



什什么是Maximal Symmetry

HV

(G/H)A

G1L G1R

V

Twisted Moose

GV 0

SO(5)/SO(4)

我们证明



集体化对称性破缺

Higgs势能的倾向于得到偏⼤大的v/f

Collective Symmetry Breaking, “Little Higgs”

G/H

不不依赖于⾼高能的Higgs势能代价是最少6次⽅方压低
G/H
G/H
G/H 最少需要3个全同

的对称性结构和
3套类SM粒⼦子

Nima Arkani-hamed

IAS

“That is how I get tenured in Harvard”

Higgs势能的倾向于得到500GeV
左右的Higgs

精细条件参数



具体实现

L
mix

= �q̄
i

O
i

5=4+1费⽶米⼦子质量量和相互作⽤用通过带有
pNGB矩阵的线性混合产⽣生

Oi � U i

新的复合的top伴随⼦子

G/H如果是对称性培集空间



形状因⼦子的形式

如果把新的复合的
top伴随⼦子积掉，
我们能得到低能线
性表示的有效理理论



对称性

质量量项破坏对称性



对称性决定势能的形式

Log 发散

有限项



Higgs势能结构

cL ⇠ cR ⇠ ⇤2

cLL ⇠ c0LL ⇠ cRR ⇠ c0RR ⇠ log⇤Tuning



电弱对称性破缺Tunning
Maximally 

symmetric case

20% tuning



得到Higgs质量量

我们⼀一般的困难是top太重，很难得到⼀一个轻的Higgs

能最容易易的得到
轻的Higgs质量量

最⼩小

最⼩小



⽮矢量量波⾊色⼦子
SO(5)/SO(4)

⽮矢量量波⾊色⼦子满
⾜足SO(5)对称性

⾃自动推导出
Weinberg sum rule



参数精细调节



数值结果

No tunning



物理理意义和预⾔言
物理理 为0 Top动能项：没有⾮非线性修正

类顶夸克态最轻的是exotic charge (5/3)

Mt(h) ⇠ sin

✓
2h

f

◆✓
1 +

1

2
sin2(h/f)

�
⇧q

1(0)�⇧t
1(0)

�◆

通过测量量mt, tth, tthh, etc可以确定 是否为0

发现类顶夸克态，测量量它的性质

对⻆角的Higgs Yukawa和质量量



未来可能的⽅方向

⽅方法推⼴广到Twin Higgs和很多其他的模型
(unified description)

Maximal Symmetry 新的 UV completion 
(Twisted Moose)

有效场论框架下新的collider search（Master 
formular）

⽅方法推⼴广到Inflation，同样解决⾃自然性问题



Models with Preons



电弱对称破缺机制⼆二
更更基本的部分⼦子+辐射修正Higgs 势能:

D. Liu, Teng. Ma, 
J.S, 1608.XXXX

U(4)/Sp(4)

U(6)/SO(6)

对称性U(1)�



Higgs as SU(4)/SP(4) pNGB

The electroweak part of CHM:

Similar things happens in the QCD part of 



部分⼦子的Higgs势能贡献
来着于部分⼦子的势能项



Top和伴随⼦子的Higgs势能贡献

Top伴随⼦子的全表示 (6,6)

可能的Top
伴随⼦子



Higgs势能的分析

Higgs势能项有了了新的贡献, light Top伴随⼦子可以很重。

和模型混合有关

No light higgs, light top partners!



单态决定部分⼦子质量量

势能项只有部分⼦子贡献

⼏几百GeV到1~2TeV

单态U(1)�

可以⽤用来解释
750GeV共振峰

通过反常和规范波
⾊色⼦子相互作⽤用



More pheno

Six top signals

Colored pion constrains 

sigma —>ZZ (anomaly decay).

Even without a 750GeV jump, it is still interesting!



Backup
slice



电弱对称破缺机制
辐射修正Higgs 势能:

Top 夸克质量量

After canonically normalize the top field, one can compute the top mass from the zero of the
propagator:
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Expanding for small momenta, we can obtain an approximated expression for the mass:
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The Coleman Weinberg e⇤ective potential for the Higgs h that one obtains from this e⇤ective
Lagrangian is (after going to Euclidean momenta):
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Let us write explicitly the form factors in the Euclidean momenta:
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3.3 Fermionic contribution to the Higgs potential

The fermionic contribution to the Higgs potential reads
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Spin 1/2 Resonances

There are many ways to generate the fermion masses

Here we only consider the “partial compositeness”

Good for 
flavor physics

Linear mixing: 

Maximally suppressed 
the FCNC by the 

small fermion mass

L
mix

= �q̄
i

O
i

Oi � U i Composite operators 

 i
Composite fermions sit in the 

representation of SO(4)
Qj Sibi-doublet Singlet

Bilinear: L = �q̄q��̄�⇥ techicolor, conformal techicolor, etc



Higgs产⽣生和衰变



Higgs物理理

Top耦合为负的情况不不再存在
Higgs 拟合 ⇠ < 0.1



Top 伴随⼦子的寻找

限制在700~900GeV



D. Matsedonskyi, G. Panico, A. 
Wulzer, JHEP, 1604, (2016) 003.

当前Top伴随⼦子寻
找正在检验原始
的复合Higgs模型

Top 伴随⼦子的寻找



SUSY粒⼦子的寻找



ttbar Higgs


