How to break EW symmetry naturally?

Jing Shu ITP-CAS

- ●我们究竟需要解决什么问题?疑难在哪里?
- 电弱对称性破缺的有效拉氏量,非线性组合。
- ●最大对称性下的复合Higgs模型。

● 未来展望。

电弱对称性破缺起源

我们已知的"旧"物理

基本粒子图谱

The Weinberg-Salam Nodel

$$\begin{split} \mathcal{L} &= \overline{E}_{L}(i \not{\partial}) E_{L} + \bar{e}_{R}(i \not{\partial}) e_{R} + \overline{Q}_{L}(i \not{\partial}) Q_{L} + \bar{u}_{R}(i \not{\partial}) u_{R} + \bar{d}_{R}(i \not{\partial}) u_{R} + g (W_{\mu}^{+} J_{W}^{\mu +} + W_{\mu}^{-} J_{W}^{\mu -} + Z_{\mu}^{0} J_{Z}^{\mu}) + e A_{\mu} J_{EM}^{\mu}, \\ J_{W}^{\mu +} &= \frac{1}{\sqrt{2}} (\bar{\nu}_{L} \gamma^{\mu} e_{L} + \bar{u}_{L} \gamma^{\mu} d_{L}); \qquad e = \frac{gg'}{\sqrt{g^{2} + g'^{2}}}, \\ J_{W}^{\mu -} &= \frac{1}{\sqrt{2}} (\bar{e}_{L} \gamma^{\mu} \nu_{L} + \bar{d}_{L} \gamma^{\mu} u_{L}); \qquad e = \frac{gg'}{\sqrt{g^{2} + g'^{2}}}, \\ J_{Z}^{\mu} &= \frac{1}{\cos \theta_{w}} \Big[\bar{\nu}_{L} \gamma^{\mu} \Big(\frac{1}{2} \Big) \nu_{L} + \bar{e}_{L} \gamma^{\mu} \Big(-\frac{1}{2} + \sin^{2} \theta_{w} \Big) e_{L} + \bar{e}_{R} \gamma^{\mu} \Big(e_{L} + \bar{u}_{L} \gamma^{\mu} \Big(-\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{w} \Big) u_{L} + + \bar{u}_{R} \gamma^{\mu} \Big(-\frac{2}{3} \sin^{2} \theta_{w} \Big) d_{L} \\ &+ \bar{d}_{L} \gamma^{\mu} \Big(-\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{w} \Big) d_{L} + \bar{d}_{R} \gamma^{\mu} \Big(\frac{1}{3} \sin^{2} \theta_{w} \Big) d_{L} \\ J_{EM}^{\mu} &= \bar{e} \gamma^{\mu} \Big(-1 \Big) e + \bar{u} \gamma^{\mu} \Big(+ \frac{2}{3} \Big) u + \bar{d} \gamma^{\mu} \Big(-\frac{1}{3} \Big) d. \end{split}$$

The chosen one!

为什么Higgs是上帝粒子

Higgs<mark>机制</mark>给予所 有基本粒子质量

Higgs 粒子的势能项

$$V(h) = \frac{1}{2}\mu^{2}h^{2} + \frac{\lambda}{4}h^{4}$$

自发性电弱对称性破缺 (Higgs机制) <mark>规范对称性</mark>自发破缺

$$\langle h
angle \equiv v
eq 0 \
ightarrow \ m_W = g_W rac{v}{2}$$

发现Higgs让我们对 质量起源了解更多

・1日"物理中的未知?
・
・
Higs的势能

$$V(h) = \frac{1}{2}\mu^{2}h^{2} + \frac{\lambda}{4}h^{4}$$

Ludau-Ginzberg 势能(超导)
 $m_{h}^{2}(h^{\dagger}h) + \frac{1}{2}\lambda(h^{\dagger}h)^{2} + \frac{1}{3!\Lambda^{2}}(h^{\dagger}h)^{3}$
 $\mu_{h}^{2}(h^{\dagger}h) + \frac{1}{2}\lambda(h^{\dagger}h)^{2} + \frac{1}{3!\Lambda^{2}}(h^{\dagger}h)^{3}$
 $\frac{1}{2}\lambda(h^{\dagger}h)^{2}\log\left[\frac{(h^{\dagger}h)}{m^{2}}\right]$
 $V(h) \simeq -\gamma s_{h}^{2} + \beta s_{h}^{4}$.

我们其实从来也不知道,更不知道 为什么会有电弱对称性破缺

粒子物理最核心 最现实的问题

质量起源的能标

为什么这是一个问题?

Higgs的势能究竟是啥样? 电弱破缺机制的势能究竟是 怎么来的?

我们不 断向上 探索的

ムト	
H C	田
FU.	

$$m_{phys}^2 = m_0^2 + c\Lambda^2 + \dots$$

电弱能标

Top, Higgs, W, Z, etc

为什么这是一个问题? $m_{phys}^2 = m_0^2 + c\Lambda^2 + \dots$

 如果Lambda是我们的某些基本 高能标(Plank? GUT? etc),可怕 的相消.规范等级度的问题 (Gauge Hierarchy Problem)

Lambda如果很低呢?OK 我们的新物理也许并不远!
 两种情况都在我们电弱能标的世界完美体现

电子质量的启示 我们先看看第一种情况: $m_{phys}^2 = m_0^2 + c\Lambda^2 + \dots$ 如果我们的理论(SM?),在 能标Lambda下也成立 如果 $\Lambda \sim M_{plank}$ 公式右边相除要达到10^{32} Higgs真空期望值对 Huge!!! 于量子辐射修正大 大的不稳定

电子质量的启示 •••• 如果我们不能扔很多个这种铅笔的话(人择原理)

事实上<mark>对称性</mark>能够保证(Higgs势能) 对于量子辐射修正的稳定性

$$\Delta E_{
m Coulomb} = rac{1}{4\piarepsilon_0}rac{e^2}{r_e}. \qquad \qquad \delta m_e = \int_{r=\Lambda^{-1}} d^3 r ec E^2 \simeq lpha ec a ec a$$

$$(m_e c^2)_{obs} = (m_e c^2)_{bare} + \Delta E_{\text{Coulomb}}$$

电子质量项 线性发散

电子质量的启示 e⁻ $\Delta E_{\text{pair}} = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_c}.$ Weisskopf 1939 量子涨落引入了正电子 e+ $\delta m_e \simeq rac{lpha}{\pi} m_e \log\left(rac{\Lambda}{m_e} ight)$

忽略质量的情况下,电子正电子满足 Chiral symmetry

Lambda取Plank质量,修正项只有10%

有关Higgs的对称性 正电子 手证对称性: 电子 \Leftrightarrow 超对称 波色子 费米子 \Leftrightarrow spin spin \tilde{g} gluino 1 1/2gluon, g gaugino $\tilde{W}^{\pm}, \tilde{Z}$ W[±], Z 1/21 \tilde{q} 1/2squark quark 0

Standard Model particles

superpartners

超对称性

top

stop

nս

完整的SUSY RGE

负数

SUSY中的质量起源

GUT能标下的初条件?

$$m_h^2 \simeq m_{\rm SUSY}^2 \left(1 - \frac{y_{\rm top}^2}{16\pi^2} \log\left[\frac{\Lambda^2}{m_{{\rm W},{\rm Z}}^2}\right] + \cdots\right)$$

$$\begin{split} &16\pi^2 \mu \frac{d}{d\mu} m_{H_u}^2 = 3X_t - 6g_2^2 M_2^2 - \frac{6}{5}g_1^2 M_1^2, \\ &16\pi^2 \mu \frac{d}{d\mu} m_{H_d}^2 = -6g_2^2 M_2^2 - \frac{6}{5}g_1^2 M_1^2, \\ &16\pi^2 \mu \frac{d}{d\mu} m_{Q_3}^2 = X_t - \frac{32}{3}g_3^2 M_3^2 - 6g_2^2 M_2^2 - \frac{2}{15}g_1^2 M_1^2, \\ &16\pi^2 \mu \frac{d}{d\mu} m_{U_3}^2 = 2X_t - \frac{32}{3}g_3^2 M_3^2 - \frac{32}{15}g_1^2 M_1^2. \end{split}$$

 \mathbf{n}_t

Vι

SUSY particles

Pi介子质量的启示

quark and gluon: q g

GeV

100 MeV-

More composite resonaces K, η, ρ, \ldots

QCD

Pi介子是pNGB 通过破坏QCD的味道对称性获得质量

Higgs粒子的复合性?

 $\bigcirc \bigcirc \bigcirc$

到新物理能标下,我们才能看 见复合Higgs的结构(类似QCD Pi介子形状因子的偏移)

可能的新物理偏移

$$\delta = c rac{m_W^2}{M_{
m NP}^2}, \,\, c = \mathcal{O}(1)$$

Higgs粒子是可分 的,类似Pi介子 新的层子模型的时代?

 \mathbf{LHC} m_{H}^{-1} $\mathbf{H}^{\mathcal{N}_{\mathcal{N}}}$ \mathbf{Z}

未来Higgs精确测量

Measurement Precision

 m_H^{-1}

$$\kappa_Z = rac{g_{hZ} (ext{Measured})}{g_{hZ} (ext{SM})}$$

Higgs as a pNGB

Higgs作为pNGB

- ノ 全局对称性G自发破缺到H,会有无质量的波色子 (NGB)在培集空间中(coset space),如果G有直接 破缺的效应, NGB将获得小的质量 如果G自发破缺到H是新的禁闭的强作用,pNGB是个复合粒子 为什么考虑这种情况? ● Higgs质量相对于Higgs结构能标(I~I0TeV) 很低 以前电子对撞机的实验限制 Higgs势能的起源 (The origin of EWSB)
 - 一般性的普适结构 (universal prediction)(Like soft pion theorem)

Higgs势能起源

复合Higgs中基本部分子的质量
 SM粒子的(主要是Top夸克的)量子辐射修正(圈图效应)?以后讨论focus在top sector

Telated to those of $SO(3) \xrightarrow{} SO(4)$, when

f an angle θ , see Appendix A. troweak group is unbroken, being contained bosons form a complex doublet of $SU(2)_L$. bosons gauge (a combination of) the SO(5)/SCare eaten to give mass to the W^{ed} and the

Goldstone Lag

Consider the most general Goldstone interaction which has a custodial symmetry

(only the gauge sector)

 $SU(2)_L \times SU(2)_R$

 $\Sigma(x) = \exp(i\sigma^a \chi^a(x)/v)$

 $\mathcal{L} = \frac{v^2}{4} Tr[(D_{\mu}\Sigma)^{\dagger}D^{\mu}\Sigma]$

Goldstone interaction

Consider a physical scalar h

$$\mathcal{L}_{H} = \frac{1}{2} (\partial_{\mu} h)^{2} + V(h) + \frac{v^{2}}{4} Tr[(D_{\mu} \Sigma)^{\dagger} (D_{\mu} \Sigma)](1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} + ...) - \frac{v}{\sqrt{2}} \Sigma[1 + c_{j}\frac{h}{v} + \cdots] \begin{pmatrix} y_{ij}^{u} u_{R}^{j} \\ y_{ij}^{d} d_{R}^{j} \end{pmatrix} + h.c.$$

Higgs physics

$$f^{2} \sin^{2} \frac{h}{f} = f^{2} \left[\sin^{2} \frac{\langle h \rangle}{f} + 2 \sin \frac{\langle h \rangle}{f} \cos \frac{\langle h \rangle}{f} \left(\frac{h}{f} \right) \right. \\ \left. + \left(1 - 2 \sin^{2} \frac{\langle h \rangle}{f} \right) \left(\frac{h}{f} \right)^{2} + \dots \right] \\ = v^{2} + 2v \sqrt{1 - \xi} h + (1 - 2\xi) h^{2} + \dots$$

W boson mass

 $a = \sqrt{1 - \xi} \qquad b = 1 - 2\xi$

modification of hVV coupling

Similarly for fermions.

$$m_f(h) \propto \sin\left(\frac{2h}{f}
ight)$$
 $c = \frac{1-2\xi}{\sqrt{1-\xi}}$ 5, 10
 $m_f(h) \propto \sin\left(\frac{h}{f}
ight)$ $c = \sqrt{1-\xi}$ Spinorial 4

Higgs fits

P. Giardino, et al, arxiv: 1303.3570

Suppressed production rate

Overall Higgs fit $\xi < 0.2$

Picture of CHMs

Spin-one Resonances

The theory make sense up to $\Lambda = 4 \pi f$

v

We assume that a given number of resonances in the composite sector are lighter than Λ so that it appears in the effective action. choice, the four NG bosons of SC Consider Spin-I resonances in the SU(2) and SU(2) them is eat representation the NG bosons and can lead to $\langle \pi \rangle \neq 0$ (see Fig. 1). As a result, $\rho_L: (\mathbf{3}, \mathbf{1}) \quad \rho_R: (\mathbf{1}, \mathbf{3}) \quad \text{three of the 2ri2nal NG bosons}$ by identifying $\theta = \langle \pi \rangle / f$ and the 4-vector and its vev. One first sponte eous step profess: & 'Vector Resonances" oublet of No rise to any electroweak, symmetry is spontar $1 \ll g_{\rho}, g_a \ll 4 \pi$ strong Culled die II.

Spin 1/2 Resonances

There are many ways to generate the fermion masses $\mathcal{L} = \lambda ar{q} q \langle ar{\Psi} \Psi
angle$ Bilinear: techicolor, conformal techicolor, etc Here we only consider the "partial compositeness" Linear mixing: $\mathcal{L}_{mix} = \lambda \bar{q}_i \mathcal{O}_i \checkmark$ Good for $\mathcal{O}_i \sim U \Psi_i$ **Composite operators** flavor physics Composite fermions sit in the Ψ_i Maximally suppressed representation of SO(4)the FCNC by the small fermion mass Q_j bi-doublet S_i Singlet

Higgs势能起源

复合Higgs中基本部分子的质量
 SM粒子的(主要是Top夸克的)量子辐射修正(圈图效应)?以后讨论focus在top sector

电弱对称破缺机制工

$$V_f(h)\simeq -\gamma_f s_h^2+eta_f s_h^4,$$

辐射修正

 $\sin^2 \langle H \rangle / f = \xi \ll 1$

$$m_H^2 = 8\,\xi(1-\xi)\,eta\,.$$

规范波色子贡献

费米子贡献

$$\begin{split} \gamma_{f} &= \frac{2N_{c}}{(4\pi)^{2}} \int_{0}^{\infty} dp_{k}^{2} p_{E}^{2} \left(\frac{\Pi_{1Q}}{\Pi_{Q}} + \frac{\Pi_{1S}}{\Pi_{E}} + \frac{\Pi_{QS}}{p_{k}^{2} \Pi_{Q} \Pi_{S}} \right), \\ \beta_{f} &= \frac{N_{c}}{(4\pi)^{2}} \int_{\mu_{f}^{2}}^{\infty} dp_{E}^{2} p_{E}^{2} \left(\left(\frac{\Pi_{QS}^{2}}{p_{E}^{2} \Pi_{Q} \Pi_{S}} + \frac{\Pi_{1Q}}{\Pi_{Q}} + \frac{\Pi_{1S}}{\Pi_{Q}} \right)^{2} - \frac{2(p_{E}^{2} \Pi_{1Q} \Pi_{1S} - \Pi_{QS}^{2})}{p_{E}^{2} \Pi_{Q} \Pi_{S}} \right). \end{split}$$

$$\begin{split} \mathcal{B} \times \mathcal{F} \overset{\text{Top}}{\Rightarrow} \mathcal{B} \times \mathcal{F} \overset{\text{Top}}{\Rightarrow} \mathcal{B} \overset{\text{Top}}{$$

N

 TT^2

Higgs 势能:

 $\gamma_g = -rac{3}{8(4\pi)^2} \int_0^\infty dp_E^2 \, p_E^2 \left(rac{3}{\Pi_0} + rac{c_X^2}{\Pi_B}
ight) \Pi_1,$

1-

 $eta_g = -rac{3}{64(4\pi)^2} \int_{\mu_z^2}^\infty dp_E^2 \, p_E^2 \left(rac{2}{\Pi_0^2} + \left(rac{1}{\Pi_0} + rac{c_X^2}{\Pi_B}
ight)^2
ight) \Pi_1^2.$

轻的Top伴随子

D. Marzocca, M. Serone, J.S,

JHEP, 1208, (2012) 013

参数空间扫描

 $\xi = 0.1$

 $m_L < 900 \text{ GeV}$

最轻的Top 双-二重态 Q 伴随子 单态 S

寻找轻的Top伴随子

简单的理解

$$m_{H}^{2} = rac{8eta}{f_{\pi}^{2}} \sin^{2}(v/f_{\pi}) \cos^{2}(v/f_{\pi}) \simeq rac{2N_{c}y^{4}}{16\pi^{2}} f_{\pi}^{2} \sin^{2}(2v/f_{\pi}) \,,$$

$$m_t \simeq rac{\max(m_T^*, m_{\widetilde{T}}^*)}{2\sqrt{2}} \sin arphi_L \sin arphi_R \sin (2v/f_\pi) \ = \ rac{1}{2\sqrt{2}} rac{y_L y_R f_\pi^2}{\min(m_T, m_{\widetilde{T}})} \sin (2v/f_\pi) \ .$$

$$m_H \simeq rac{\sqrt{N_c}}{\pi} rac{\min(m_T, m_{\widetilde{T}})}{f_\pi} m_t \simeq 130 \, {
m GeV} rac{\min(m_T, m_{\widetilde{T}})}{1.4 f_\pi} \, .$$

I25GeV的Higgs我们有Top伴随子的质量下限, 和模型混合无关

最新的constrain大约 到了I.ITeV左右

$$\mathrm{BR}(t' \to th) \approx \mathrm{BR}(t' \to tZ) \approx \mathrm{BR}(t' \to bW)/2 \approx 0.25$$

Maximally symmetric composite Higgs

新框架下突破) (● 得到正确的电弱对称性破缺(v<<f) ● 得到正确的125 GeV Higgs质量? ● 对高能标下的物理没有依赖,Higgs势能不依赖 于cut off scale下的物理 规范等级度的问题,精细调节 我 ● 从最基本的群论出发,发现Higgs宇称的重要性, 做 提出一套全新最简洁的研究问题的方法 (linear realization in the symmetric coset space) 方法论突破 7 什 ● 完美的解决上面的所以问题, 发现一种新的自带 对称性 (Maximal symmetry) 模型的突破 C. Csaki, T. Ma, J. Shu., in preparation

Symmetric space

对于任意全局G对称性破缺到H $T^{\hat{a}}(T^{a})$ is the (un)broken generator $[T^{\hat{a}}, T^{\hat{a}}] \sim T^{a}$ $[T^a, T^a] \sim T^a, [T^a, T^a] \sim T^a$ 总是满足 对称性培集空间 G群存在着一个同构空间(automorphism) $VT^aV^{\dagger} = T^a$ $VT^{\hat{a}}V^{\dagger} = -T^{\hat{a}}$ Higgs 是NG粒子,在G/H培集空间内 Higgs是个负的Higgs宇称(和QCD里面的pi宇称一样)

对称性下的变化规律

● 对于任意全局G对称性破缺到H, NGB相互作用形式

The CCWZ唯象表示

$$U=\exp\left(\frac{ih^{\hat{a}}T^{\hat{a}}}{f}\right)$$

$$U
ightarrow gUh(h^{\hat{a}},g)^{\dagger}$$

 $\tilde{U} = VUV^{\dagger} = U^{\dagger}.$

而对于对称性培集空间 线性变换

$$\Sigma' = U^2 V$$
 G/H信息包含在V里面

$$\Sigma' \to g \Sigma' g^\dagger$$
 .

费米子场相互作用

$$\Sigma' = egin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & c_{2h} & -s_{2h} \ 0 & 0 & 0 & -s_{2h} & -c_{2h} \end{pmatrix}$$

 $\Sigma' o g \Sigma' g^{\dagger}$.

最普实的top夸克和Higgs相互作用 $\Sigma'^2 = 1$ $\Psi \rightarrow g \Psi$ Master formular

Higgs势能项来源于 top圈图贡献

根据对称性写出的有效场(任何模型),不同形状因子的来源

Higgs势能项

top质量是左右手top分别和top伴随子混合产生的话 No UV Divergence $M_1^t \sim \lambda_L \lambda_R f^2 (M_Q - M_S)/p^2$ $V(h) \sim \lambda_L^2 \lambda_R^2 f^4 (M_Q - M_S)^2 / \Lambda^2$ Higgs的势能项对Higgs场的依赖就是top质量依赖关系的平方! $m_t \sim \sin_{2h}$ Higgs势能项 $(\sin_{2h})^2 = s_h^2 - s_h^4$.

什么是Maximal Symmetry

SO(5)/SO(4)

$$V = \left(\begin{array}{cc} \mathbf{1}_{4 \times 4} & 0\\ 0 & -1 \end{array}\right)$$

 $\frac{H_V}{(G/H)_A}$

"That is how I get tenured in Harvard"

具体实现

费米子质量和相互作用通过带有
pNGB矩阵的线性混合产生

$$\mathcal{L}_{mix} = \lambda \bar{q}_i \mathcal{O}_i$$

 $\mathcal{O}_i \sim U \Psi_i$
 $\mathcal{L} = \lambda_L \bar{q}_L^{\alpha} \Lambda_{\alpha I}^L \mathcal{O}_R^I + \lambda_R \bar{t}_R \Lambda_{\alpha I}^R \mathcal{O}_L^I + h.c$

$$\begin{aligned} \mathcal{L}_{f} &= \bar{\Psi}_{Q}(i \not\!\!\!/ - M_{Q}) \Psi_{Q} + \bar{\Psi}_{S}(i \not\!\!\!/ - M_{S}) \Psi_{S} \\ &+ \frac{\lambda_{R} f}{\sqrt{2}} \bar{\Psi}_{t_{R}} P_{L}(\epsilon_{tS} U \Psi_{S} + \epsilon_{tQ} U \Psi_{Q}) \\ &+ \lambda_{L} f \bar{\Psi}_{q_{L}} P_{R}(\epsilon_{qS} U \Psi_{S} + \epsilon_{qQ} U \Psi_{Q}) + h.c, \end{aligned}$$

5=4+1 新的复合的top半随子

$$\Psi_Q = \frac{1}{\sqrt{2}} \begin{pmatrix} iB - iX_{5/3} \\ B + X_{5/3} \\ iT + iX_{2/3} \\ -T + X_{2/3} \\ 0 \end{pmatrix} \quad \Psi_S = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ T_1 \end{pmatrix}$$

G/H如果是对称性培集空间

$$\Psi_+ = V \Psi_- \quad V = \left(egin{array}{cc} {f 1}_{4 imes 4} & 0 \ 0 & -1 \end{array}
ight)$$

$$\Psi_+ = rac{1}{\sqrt{2}}(\Psi_2 + \Psi_1) \quad \Psi_- = rac{1}{\sqrt{2}}(\Psi_2 - \Psi_1)$$

形状因子的形式

 $\bigcirc \bigcirc \bigcirc \bigcirc$

如果把新的复合的 top伴随子积掉, 我们能得到低能线 性表示的有效理论

$$\begin{split} \frac{\Pi_0^{q,t}}{\lambda_{L,R}^2 f^2} &= 1 + \frac{(c_{-L,R}^2 + c_{+L,R}^2)(M_Q^2 + M_S^2 - 2p^2)}{2(p^2 - M_S^2)(M_Q^2 - p^2)} \\ &+ \frac{c_{-L,R}c_{+L,R}(M_S + M_Q)(M_S - M_Q)}{(p^2 - M_S^2)(M_Q^2 - p^2)} \\ \frac{\Pi_1^{q,t}}{\lambda_{L,R}^2 f^2} &= \frac{c_{+L,R}c_{-L,R}(M_Q^2 + M_S^2 - 2p^2)}{(p^2 - M_S^2)(M_Q^2 - p^2)} \\ &+ \frac{(c_{+L,R}^2 + c_{-L,R}^2)(M_S^2 - M_Q)(M_S + M_Q)}{2(p^2 - M_S^2)(M_Q^2 - p^2)} \\ \frac{M_1^t}{\lambda_L \lambda_R f^2} &= \frac{M_Q^2 M_S(c_{-L} - c_{+L})(c_{-R} - c_{+R})}{2(p^2 - M_Q^2)(p^2 - M_S^2)} \\ &- \frac{M_S^2 M_Q(c_{-L} + c_{+L})(c_{-R} + c_{+R})}{2(p^2 - M_Q^2)(p^2 - M_S^2)} \\ &+ \frac{M_Q(c_{-L} + c_{+L})(c_{-R} + c_{+R})p^2}{2(p^2 - M_Q^2)(p^2 - M_S^2)} \\ &- \frac{M_S(c_{-L} - c_{+L})(c_{-R} - c_{+R})p^2}{2(p^2 - M_Q^2)(p^2 - M_S^2)}, \end{split}$$
(54)

对称性

$$SO(5)_L imes SO(5)_R$$

质量项破坏对称性

 $M_Q - M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_V$ $M_Q + M_S = 0 \Rightarrow SO(5)_L \times SO(5)_R / SO(5)_{V'}$ $|M_Q| \neq |M_S| \Rightarrow SO(5)_L \times SO(5)_R / SO(4)_V \quad (23)$

对称性决定势能的形式

• If $c_{+L} = 0$, it is obvious that the Lagrangian has the Higgs goldstone symmetry $L = U^{\dagger} \in SO(5)_L$ and $R = U^{\dagger} \in SO(5)_R$ for $M_1 = M_2$ and $R = (UV)^{\dagger} \in SO(5)_R$ for $M_1 = -M_2$. Therefore, for the real Higgs potential, we have

$$V_{L\xi} \sim |\lambda_L|^2 c_{+L}^2 f^2 (M_1 + M_2) (M_1 - M_2) \log \Lambda^2$$
 (24)

• $c_{-L} = c_{-R} = 0$ and $M_1 + M_2 = 0$. In this case, if $c_{+L} = 0$, the Higgs Goldstone symmetry is $L = U^{\dagger} \in SO(5)_L$ for Ψ_{+L} and $R = (UV)^{\dagger} \in SO(5)_R$ for Ψ_{+R} . Similarly, for $c_{+R} = 0$, the Higgs Goldstone symmetry is $R = U^{\dagger} \in SO(5)_R$ and $L = (UV)^{\dagger} \in SO(5)_L$. Therefore, the potential must be

 $SO(4)_V$

Log发散

$$|\lambda_L \lambda_R|^2 c_{+L}^2 c_{+R}^2 f^4 (M_1 - M_2)^2 / \Lambda^2.$$
 (26)

Higgs Bfl data
$$V_f(h) \simeq -\gamma_f s_h^2 + \beta_f s_h^4$$
 $\xi = \frac{\gamma_f}{2\beta_f}$ $V_f(h) \simeq -\gamma_f s_h^2 + \beta_f s_h^4$ $\xi = \frac{\gamma_f}{2\beta_f}$ **Dobain $\xi \ll 1$** Y_{div} much smaller than β_{div} $V_{div} = \frac{N_c M_f^4}{16\pi^2 g_f^2} [c_2^{L_c} c_c^2 - c_n c_n^2 + c_{LL} \frac{c_h^4}{g_f^2} + c_n \frac{c_h^4}{g_f^2}) s_h^2$
 $= -\gamma_{div} s_h^2 + \beta_{div} s_h^4$ Y_{div} much smaller than β_{div} $V_{div} = \frac{N_c M_f^4}{16\pi^2 g_f^2} [c_2^{L_c} c_c^2 - c_n c_n^2 + c_{LL} \frac{c_h^4}{g_f^2} + c_n \frac{c_h^4}{g_f^2}) s_h^2$
 $= -\gamma_{div} s_h^2 + \beta_{div} s_h^4$ Y_{div} $V_{div} = \frac{N_c M_f^4}{16\pi^2 g_f^2} + c_n \frac{c_h^4}{g_f^2} + c_n \frac{c_h^4}{g_f^2}) s_h^4$
 $= -\gamma_{div} s_h^2 + \beta_{div} s_h^4$ Y_{div} $V_{div} = \frac{N_c M_f^4}{16\pi^2 g_f^2} + c_n \frac{c_h^4}{g_f^2} + c_n \frac{c_h^4}{g_f^2}) s_h^4$
 $= -\gamma_{div} s_h^2 + \beta_{div} s_h^4$ Y_{div} $V_{div} = \frac{N_c M_f^4}{16\pi^2 g_f^2} + c_n \frac{c_h^4}{g_f^2} + c_n \frac{c_h^4}{g_f^2}) s_h^4$
 $= -\gamma_{div} s_h^2 + \beta_{div} s_h^4$ Y_{div} M_{div} M_{div}

电弱对称性破缺Tunning

$$V_{h} = c_{LR} \frac{N_{c} M_{f}^{4}}{16\pi^{2}} \left(\frac{\epsilon_{L}^{2} \epsilon_{R}^{2}}{g_{f}^{4}}\right) [-s_{h}^{2} + s_{h}^{4}] + \mathcal{O}(\frac{\epsilon_{L}^{4} \epsilon_{R}^{4}}{g_{f}^{8}})$$
$$\simeq c_{LR} \frac{N_{c} M_{f}^{4}}{16\pi^{2}} \left(\frac{y_{t}}{g_{f}}\right)^{2} [-s_{h}^{2} + s_{h}^{4}] + \mathcal{O}(\frac{y_{t}^{4}}{g_{f}^{4}})$$
$$\equiv -\gamma_{f} s_{h}^{2} + \beta_{f} s_{h}^{4}$$
(39)

$$\xi = \frac{\gamma_f}{2\beta_f} = 0.5$$

$$\gamma_g = -\frac{9f^2g^2m_{\rho}^2\,\log\!2}{64\pi^2}$$

$$\xi \ll 1$$
, we require $\gamma_f \simeq -\gamma_g$.

$$\Delta^{(5+5)} = \frac{\max(|\gamma_f|, |\gamma_g|)}{|\gamma_f + \gamma_g|} \simeq \max(\frac{1}{2\xi}, \frac{1}{2\xi} - 1) = \frac{1}{2\xi}(44)$$

20% tuning

矢量波色子

$$m_+^2 = rac{m_
ho f_
ho + m_a f_a}{2}, \ m_-^2 = rac{m_
ho f_
ho - m_a f_a}{2} \ f_+^2 = rac{f^2 + 2f_a^2 + 2f_
ho^2}{8}, \ f_-^2 = rac{f^2 + 2f_a^2 - 2f_
ho^2}{8}$$

数值结果

	V(h)	G/H	Tunig
$MCHM_{10}$	$\sim M_2^t ^2 f^2 s_h^2 c_h^2$	$\frac{SO(5)_L \times SO(5)_R}{SO(5)_{D'}}$	$\frac{0.5}{\xi}$
MCHM_{14}	$\sim f^2 (6s_{2h} + 5s_{4h})^2$	$\frac{SO(5)_L \times SO(5)_R}{SO(4)_D}$	$\frac{13-\sqrt{59}}{20\xi}$
MCHM_{14}	$\sim f^2 (6 s_{2h} - 3 s_{4h})^2$	$\frac{SO(5)_L \times SO(5)_R}{SO(4)_D}$	$\frac{1+\sqrt{3}}{4\xi}$
$MCHM_{14}$	$\sim M_2^t ^2 f^2 s_{2h}^2 c_{2h}^2$	$\frac{SO(5)_L \times SO(5)_R}{SO(5)_{D'}}$	$\frac{2-\sqrt{2}}{4\xi}$

No tunning

物理意义和预言 物理 $\Pi_{0,1}^{q,t}$ 为0 Top动能项: 没有非线性修正 $M_t(h) \sim \sin\left(\frac{2h}{f}\right) \left(1 + \frac{1}{2}\sin^2(h/f)\left(\Pi_1^q(0) - \Pi_1^t(0)\right)\right)$ 通过测量mt, tth, tthh, etc可以确定 <mark>Ⅱ^{q,t}</mark> 是否为0 发现类顶夸克态,测量它的性质 $Tr[Y_m M_D] = 0 + \mathcal{O}(v^2)$ 对角的Higgs Yukawa和质量 类顶夸克态最轻的是exotic charge (5/3) $M_Q + M_S = 0$

未来可能的方向

● 方法推广到Twin Higgs和很多其他的模型 (unified description)

 Maximal Symmetry 新的 UV completion (Twisted Moose)

有效场论框架下新的collider search (Master formular)

● 方法推广到Inflation,同样解决自然性问题

Models with Preons

电弱对称破缺机制工

$V(\theta) = 8C_Q f^3 m_Q \cos\theta + C_t f^4 (\lambda_L^2 - 4\lambda_R^2) \cos^2\theta (37)$

更基本的部分子+辐射修正

	$\mathrm{Sp}(2\mathrm{N}_{TC})/\mathrm{SO}(\mathrm{N}_{TC})$	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$U(1)_{\sigma}$
Q_1	F/Spin		2	0	
Q_2	F/Spin	1	-	0	0.0
Q_3	F/Spin	-	1	1/2	\mathbf{q}_{Q}
Q_4	F/Spin			-1/2	
χ_1	A/F				
χ_2	A/F	3	1	2/3	q_{χ}
χз	A/F				
χ_4	A/F				
χ_5	A/F	3	1	-2/3	q_{χ}
χ_6	A/F				

D. Liu, Teng. Ma, J.S, 1608.XXXX U(4)/Sp(4)

U(6)/SO(6)

 $U(1)_{\sigma}$ 对称性

Higgs 势能:

Higgs as SU(4)/SP(4) pNGB

The electroweak part of CHM:

 $SU(4) \times U(1)_{\sigma}/Sp(4)$

 $\tan \phi = \frac{f_{\chi}q_{\chi}}{f_{Q}q_{Q}}$

$$\begin{split} \Sigma_Q &= e^{i\Pi} \cdot \Sigma_{Q0} \quad \Pi = \cos \phi \frac{\sigma}{f_Q} + \frac{\pi^a T^a}{f} \\ \pi^a T^a &= \frac{1}{2\sqrt{2}} \begin{pmatrix} \eta \mathbf{1}_{2 \times 2} & ih \mathbf{1}_{2 \times 2} \\ -ih \mathbf{1}_{2 \times 2} & -\eta \mathbf{1}_{2 \times 2} \end{pmatrix} \end{split}$$

 $f_Q = 2\sqrt{2}f,$

$$\tan \omega = -\frac{8}{3} \quad G_{TC} = SO(11),$$
 $\tan \omega = -\frac{16}{3} \quad G_{TC} = SO(13).$

$$\tan\omega \equiv q_{\chi}/q_Q = -2T_Q/3T_{\chi},$$

Similar things happens in the QCD part of $\frac{SU(6) \times U(1)_{\sigma}/SO(6)}{SU(6) \times U(1)_{\sigma}/SO(6)}$

部分子的Higgs势能贡献

来着于部分子的势能项

$$\begin{split} V_m &= -C_Q f^3 \text{Tr}[\Sigma_{m_Q}.\Sigma_Q] - C_\chi f_6^3 \text{Tr} \left[\Sigma_{m_\chi}.\Sigma_\chi\right] + h.c \\ &= -12 C_\chi m_\chi f_6^3 \cos[\frac{\sigma \sin \phi}{f_\chi}] \\ &+ 8 C_Q m_Q f^3 \cos[\frac{\sigma \cos \phi}{f_Q}] \cos\frac{\pi}{2\sqrt{2}f} \\ &- 8 C_Q \Delta_{m_Q} f^3 \sin\frac{\sigma \cos \phi}{f_Q} \sin\frac{\pi}{2\sqrt{2}f} \frac{\pi}{\pi} \end{split}$$

$$\begin{split} m_Q &= \frac{m_{Q1} - m_{Q2}}{2}, \quad \Delta_{m_Q} = \frac{m_{Q1} + m_{Q2}}{2} \\ \pi &= \sqrt{h^2 + \eta^2} \end{split}$$

$$m_{\sigma}^2 = \frac{12C_{\chi}m_{\chi}f_6^3\sin^2\omega}{f_{\sigma}^2} - \frac{8C_Qm_Qf^3\cos^2\omega\cos\theta}{f_{\sigma}^2}$$

$$\Sigma_{m_Q} = \left(egin{array}{cc} im_{Q1}\sigma_2 & 0 \ 0 & im_{Q2}\sigma_2 \end{array}
ight)$$

$$\Sigma_{m_{\chi}} = \left(\begin{array}{cc} 0 & m_{\chi} \mathbf{1}_{3 \times 3} \\ m_{\chi} \mathbf{1}_{3 \times 3} & 0 \end{array}\right)$$

$$f_{\sigma} = \sqrt{\frac{q_Q^2 f_Q^2 + q_{\chi}^2 f_{\chi}^2}{q_Q^2 + q_{\chi}^2}}$$

$$\theta = \langle \pi \rangle / 2 \sqrt{2} f.$$

Top和伴随子的Higgs势能贡献

可能的Top 伴随子

$$\begin{split} \psi_1 &= \chi Q Q \in (6,6) \quad \psi_2 = \chi \bar{Q} \bar{Q} \in (\bar{6},6) \\ \psi_3 &= Q \bar{\chi} \bar{Q} \in (1,\bar{6}) \quad \psi_4 = Q \chi \bar{Q} \in (15,\bar{6}) \end{split}$$

Top伴随子的全表示 (6,6)

$$\begin{aligned} (6,6) &= (5,3,2/3) + (5,\bar{3},-2/3) + (1,3,2/3) + (1,\bar{3},-2/3) \\ &\equiv \Psi_5 + \Psi_5^c + \Psi_1 + \Psi_1^c \end{aligned}$$

$$\mathcal{L}_{mix} = -\lambda_L f \left(\operatorname{Tr}[\Psi_q \xi \Psi_5^c \xi^T] + b_L \operatorname{Tr}[\Psi_q \xi \Psi_1^c \xi^T] \right) -\lambda_R f \left(a_R \operatorname{Tr}[\Psi_{t_R}^c \xi \Psi_5 \xi^T] + \operatorname{Tr}[\Psi_{t_R}^c \xi \Psi_1 \xi^T] \right) -M_5 \operatorname{Tr}[\Psi_5 \Sigma_{Q0} \Psi_5^c \Sigma_{Q0}] - M_1 \operatorname{Tr}[\Psi_1 \Sigma_{Q0} \Psi_1^c \Sigma_{Q0}] + h.c$$
(28)

$$\xi = e^{i(\frac{\sigma}{2f_Q}\cos\phi + \frac{\pi^a T^a}{2f})}$$

$$\begin{split} & \textbf{Higgs 势能的分析}\\ \textbf{Higgs bket black}\\ \textbf{F}_{t6} &= -C_t f^4 \left(\sum_{\alpha=1,2} |\operatorname{Tr}[\lambda_L \hat{P}_L^\alpha \Sigma_1]|^2 + |\operatorname{Tr}[\lambda_R \hat{P}_R \Sigma_1]|^2 \right)\\ &= -C_t f^4 [\lambda_L^2 \sin^2 \frac{\pi}{2\sqrt{2}f} \frac{h^2}{\pi^2} \\ &\quad + 4\lambda_R^2 (\cos^2 \frac{\pi}{2\sqrt{2}f} + \delta^2 \sin^2 \frac{\pi}{2\sqrt{2}f} \frac{\eta^2}{\pi^2})] \quad (36) \end{split} \\ \begin{array}{l} \textbf{f}_{t} &= \frac{f^2 \lambda_L \lambda_R |a_R M_1 + b_L M_5|}{2M_T M_{T_1}} \sin \theta \\ \\ \textbf{f}_{t} &= \frac{\sqrt{2}}{2\sqrt{2}f} + \delta^2 \sin^2 \frac{\pi}{2\sqrt{2}f} \frac{\eta^2}{\pi^2})] \quad (36) \end{aligned} \\ \textbf{f}_{t} &= \frac{\sqrt{C_t} \left(\frac{1}{\lambda_R^2} - \frac{4}{\lambda_L^2}\right) \frac{M_T M_{T_1}}{2fM} m_t}{2fM} \\ &= \frac{\sqrt{N_c}}{4\pi} \frac{M_T M_{T_1}}{2\lambda f^2} m_t \\ &= \frac{\sqrt{N_c}}{\pi} \frac{M_T M_{T_1}}{\lambda v_{SM}^2} m_t \sin^2 \theta \\ \end{array} \\ \begin{array}{l} \textbf{F}_{t} &= \frac{\sqrt{N_c}}{\pi} \frac{M_T M_{T_1}}{\lambda v_{SM}^2} m_t \sin^2 \theta \\ \end{array} \\ \textbf{h}_{t} &= \frac{M_t B}{2k} \frac{B_t B}{2k} \frac{B_t B}{k} \\ \end{array}$$

Higgs势能项有了新的贡献, light Top伴随子可以很重。

单态决定部分子质量

$$m_{\sigma}^2 = \frac{12C_{\chi}m_{\chi}f_6^3\sin^2\omega}{f_{\sigma}^2} - \frac{8C_Qm_Qf^3\cos^2\omega\cos\theta}{f_{\sigma}^2}$$

$$\mathcal{L}_{WZW} = rac{g_i^2 \kappa_i}{32\pi^2 f_\sigma} \sigma \epsilon^{\mu
ulphaeta} G^i_{\mu
u} G^i_{lphaeta}$$

$$\begin{split} \Gamma(\sigma \to gg) &= \frac{\alpha_s^2 \kappa_g^2}{8\pi^3} \frac{m_\sigma^3}{f_\sigma^2} \\ \Gamma(\sigma \to W^+ W^-) &= \frac{\alpha_W^2 \kappa_W^2}{32\pi^3} \frac{m_\sigma^3}{f_\sigma^2} \left(1 - \frac{4m_W^2}{m_\sigma^2}\right)^{3/2} \\ \Gamma(\sigma \to \gamma\gamma) &= \frac{\alpha^2}{64\pi^3} (\kappa_W + \kappa_B)^2 \frac{m_\sigma^3}{f_\sigma^2} \\ \Gamma(\sigma \to ZZ) &= \frac{\alpha^2}{64\pi^3 t_W^4} (\kappa_W + \kappa_B t_W^4)^2 \frac{m_\sigma^3}{f_\sigma^2} \left(1 - \frac{4m_Z^2}{m_\sigma^2}\right)^{3/2} \\ \Gamma(\sigma \to Z\gamma) &= \frac{\alpha^2}{32\pi^3 t_W^2} (\kappa_W - t_W^2 \kappa_B)^2 \frac{m_\sigma^3}{f_\sigma^2} \left(1 - \frac{m_Z^2}{m_\sigma^2}\right)^3 \end{split}$$
(68)

势能项只有部分子贡献 通过反常和规范波 色子相互作用 几百GeV到I~2TeV 可以用来解释 750GeV共振峰

 $U(1)_{\sigma}$ 单态

More pheno

Six top signals
 Colored pion constrains
 sigma —>ZZ (anomaly decay).

Even without a 750GeV jump, it is still interesting!

电弱对称破缺机制

$$V_f(h)\simeq -\gamma_f s_h^2+eta_f s_h^4,$$

辐射修正

 $\sin^2 \langle H
angle/f = \xi \ll 1$ $m_H^2 = 8 \, \xi (1-\xi) \, eta \, .$

$$\begin{split} \gamma_g &= -\frac{3}{8(4\pi)^2} \int_0^\infty dp_E^2 \, p_E^2 \left(\frac{3}{\Pi_0} + \frac{c_X^2}{\Pi_B}\right) \Pi_1, \\ \beta_g &= -\frac{3}{64(4\pi)^2} \int_{\mu_g^2}^\infty dp_E^2 \, p_E^2 \left(\frac{2}{\Pi_0^2} + \left(\frac{1}{\Pi_0} + \frac{c_X^2}{\Pi_B}\right)^2\right) \Pi_1^2. \end{split}$$

Higgs 势能:

$$\begin{split} \gamma_{f} &= \frac{2N_{c}}{(4\pi)^{2}} \int_{0}^{\infty} dp_{R}^{2} p_{E}^{2} \left(\frac{\Pi_{1Q}}{\Pi_{Q}} + \frac{\Pi_{1S}}{\Pi_{S}} + \frac{\Pi_{QS}^{2}}{p_{E}^{2} \Pi_{Q} \Pi_{S}} \right), \\ \beta_{f} &= \frac{N_{c}}{(4\pi)^{2}} \int_{\mu_{f}^{2}}^{\infty} dp_{E}^{2} p_{E}^{2} \left(\left(\frac{\Pi_{QS}^{2}}{p_{E}^{2} \Pi_{Q} \Pi_{S}} + \frac{\Pi_{1Q}}{\Pi_{Q}} + \frac{\Pi_{1S}}{\Pi_{S}} \right)^{2} - \frac{2(p_{E}^{2} \Pi_{1Q} \Pi_{1S} - \Pi_{QS}^{2})}{p_{E}^{2} \Pi_{Q} \Pi_{S}} \right). \\ M_{t}^{2}(q^{2}, \langle h \rangle) &= \frac{\left| \Pi_{t_{L}t_{R}} \left(q^{2}, \langle h \rangle \right) \right|}{\sqrt{\Pi_{t_{L}} \left(q^{2}, \langle h \rangle \right) \Pi_{t_{R}} \left(q^{2}, \langle h \rangle \right)}}. \end{split}$$

规范波色子贡献

费米子贡献

Top 夸克质量

Spin 1/2 Resonances

There are many ways to generate the fermion masses $\mathcal{L} = \lambda ar{q} q \langle ar{\Psi} \Psi
angle$ Bilinear: techicolor, conformal techicolor, etc Here we only consider the "partial compositeness" Linear mixing: $\mathcal{L}_{mix} = \lambda \bar{q}_i \mathcal{O}_i \checkmark$ Good for $\mathcal{O}_i \sim U \Psi_i$ **Composite operators** flavor physics Composite fermions sit in the Ψ_i Maximally suppressed representation of SO(4)the FCNC by the small fermion mass Q_j bi-doublet S_i Singlet

Higgs产生和衰变

Higgs物理

Top耦合为负的情况不再存在

Higgs 拟合 $\xi < 0.1$

 $BR(t' \to th) \approx BR(t' \to tZ) \approx BR(t' \to bW)/2 \approx 0.25$

限制在700~900GeV

Top 伴随子的寻找

$\bigcirc \bigcirc \bigcirc$

D. Matsedonskyi, G. Panico, A. Wulzer, JHEP, 1604, (2016) 003.

当前Top伴随子寻 找正在检验原始 的复合Higgs模型

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

	ATLAS Preliminary
$\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$	$\sqrt{s} = 8, 13 \text{ TeV}$
	Reference
6.58 ToV 0=2	1604.07773

	Model	8.7	Jets†	E ^{miss} T	∫£ d4[A	-1]	Limit			Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \rightarrow \ell e \\ \text{ADD QBH} \rightarrow \ell e \\ \text{ADD QBH} \\ \text{ADD BH high } \sum p_T \\ \text{ADD BH multije:} \\ \text{RS1 } G_{KK} \rightarrow \ell \ell \\ \text{RS1 } G_{KK} \rightarrow \gamma \gamma \\ \text{Bulk RS } G_{KK} \rightarrow WW \rightarrow qq\ell h \\ \text{Bulk RS } G_{KK} \rightarrow HH \rightarrow bbab \\ \text{Bulk RS } g_{KK} \rightarrow tt \\ \text{2UED } / \text{RPP} \end{array}$	$2 e, \mu$ $1 e, \mu$ $=$ $2 e, \mu$ $2 v, \mu$ $2 v, \mu$ $2 v, \mu$ $1 e, \mu$ $1 e, \mu$	≥ 1 j - 1 j 2 j 2 3 j - 1 J 4 b > 1 J 2 b > 1 J 2 j 2 3 j - 1 J 2 j 2 3 j - 1 J 2 2 j 2 3 j - 1 J 4 b > 1 J/	Yes - - - Yes 21 Yes	3.2 20.3 20.5 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2 3.2	Mo Ms Ms Ms Ms Ms Gase mass Gase mass Gase mass Gase mass Gase mass Sole mass Sole mass	2.69 TeV 3.2 1.24 TeV 360-840 GeV 2.2 TeV 1.45 TeV	6.58 TeV 4.7 TeV 5.5 TeV 8.2 TeV 9.55 TeV TeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ}\\ n=5\\ n=5\\ n=5, \ M_D=3 \ \text{TeV, rot BH}\\ n=5, \ M_D=3 \ \text{TeV, rot BH}\\ n=5, \ M_D=3 \ \text{TeV, rot BH}\\ k/\overline{M}_{PT}=0.1\\ k/\overline{M}_{PT}=1.0\\ k/\overline{M}_{PT}=1.0\\ \text{RR}=0.926\\ \text{Tier}(1,1), \ \text{BR}(A^{(1,1)}\rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1011.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1406.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \mathcal{U} \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Lepophotic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qqvv \operatorname{mod} \\ \operatorname{HVT} W' \to WZ \to qqqq \operatorname{mod} \\ \operatorname{HVT} V' \to W\mathcal{H}/\mathcal{Z}\mathcal{H} \operatorname{model} \mathcal{B} \\ \operatorname{LRSM} W'_R \to to \\ \operatorname{LRSM} W'_R \to to \\ \operatorname{LRSM} W'_R \to to \end{array}$	2 τ, μ 2 τ - 1 τ, μ el A 0 ε, μ lel B - multi-channe 1 ε, μ 0 ε, μ	- 2 b - 1 J 2 J 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass Z' mass W' mass W' mass W' mass V' mass W' mass W' mass	4 2.02 TeV 1.3 TeV 2.4 TeV 2.0 T 2.31 TeV 1.92 TeV 1.76 TeV	4.74 TeV eV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502-07177 1603-08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607-05621 1410.4103 1408.0886
σ	Cl caaa Cl ll qa Cl sutt	2 e,µ 2(SS)/≥3 e,µ	2j ×≥10,≥1j	_ Yes	15.7 3.2 20.3	Λ Λ Λ		4.9 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2016-069 1607.03669 1504.04605
M	Axial-vector mediator (Dirac D Axial-vector mediator (Dirac D $ZZ_{J\chi}$ EFT (Dirac DM)	M) 0 ε,μ M) 0 ε,μ, 1 γ 0 ε,μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	ma ma Ma	1.0 TeV 710 GeV 550 GeV		$\begin{array}{l} g_{q}{=}0.25, \ g_{g}{=}1.0, \ m(\chi) < 250 \ {\rm GeV} \\ g_{q}{=}0.26, \ g_{g}{=}1.0, \ m(\chi) < 150 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	1604.07773 1604.01006 ATLAS-CONF-2015-080
p	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 nd gen	2 e 2 µ 1 e,µ	≥2j ≥2j ≥10,≥3j	Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06035 1605.06035 1508.04735
duarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WeWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 2(SS)/≥3 e, μ	$\geq 2 \circ, \geq 3$ $\geq 1 \circ, \geq 3$ $\geq 2 \circ, \geq 3$ $\geq 2 \geq 1 \circ$ $\geq 2 \geq 1 \circ$ $\geq 2 \geq 1 \circ$ $\geq 4 \circ$ $\geq 4 \circ$	i Yes i Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass Y mass B mass B mass Q mass T _{\$/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1606.04306 1409.5500 1509.04261 ATLAS/CONF-2016.032
fermions	Excted quark $q' \rightarrow q\gamma$ Excted quark $q' \rightarrow qg$ Excted quark $b' \rightarrow bg$ Excted quark $b' \rightarrow W$? Excted lepton c' Excted lepton v'	1 γ - 1 or2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j -	- Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q' mass q' mass b' mass #' mass #' mass	2.3 TrV 1.5 TeV 3.0 T 1.6 TeV	4.4 TeV 56 TeV	only u* and d*, $\Lambda = m(q^*)$ only u* and d*, $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS.CONF-2016.069 ATLAS.CONF-2016.060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorans v Higgs triplet $H^{**} \rightarrow ee$ Higgs triplet $H^{**} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e.u, 1 γ 2 e.μ 2 e (SS) 3 e.μ.τ 1 e.μ -	2j - 1 b -	Yes Yes 	20.3 20.3 13.9 20.3 20.3 20.3 7.0	ar mass N ⁸ mass H ⁴⁴ mass spin-1 invsible particle mass multi-charged particle mass monopole mass	950 GeV 2.0 TeV 570 GeV 400 GeV 657 GeV 785 GeV 1.34 TeV		$\begin{split} m(W_0) &= 2.4 \text{ TeV, no mixing} \\ DY production, BF(H_L^{**} \to ee) = 1 \\ DY production, BF(H_L^{**} \to \ell \tau) = 1 \\ a_{\text{monost}} &= 0.2 \\ DY production, q = 5e \\ DY production, g = 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1508.06020 ATLAS-CONF-2016.051 1411.2921 1410.5404 1504.04188 1509.08059
		√s = 8 TeV	√s = 13	3 TeV		10-1	1	1(Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

ttbar Higgs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Best fit μ = σ/σ_{su}

0

5

u(fiH)

Best fit $\mu = \sigma/\sigma$

2 -1 0