Subleading power threshold resummation

Jian Wang

In coll. with M.Beneke, A. Broggio, M.Garny S. Jaskiewicz, R.Szafron, L.Vernazza arXiv:1809.10631

Peking Universitu

いいなんにい

27/12/2018

In contrast, much less is understood at NLP.

 $\mu_c \sim Q\sqrt{1-z}$ $\mu_s \sim Q(1-z)$ $\mu_h \sim Q$ Tricky point: no collinear function at LP LP tactorization $\hat{\sigma}(z) = H(Q^2) QS_{\rm DY}(Q(1-z))$ $Q(1,\lambda^2,\lambda)$ $Q(\lambda^2,\lambda^2,\lambda^2)$ $(n+p, n-p, p_{\perp})$ Q(1,1,1) $\lambda = \sqrt{1-z}$

 $\hat{\sigma}(z) = \sum_{i} \int d\omega_i d\bar{\omega}_i d\omega'_i d\bar{\omega}'_i D(-\hat{s}; \omega_i, \bar{\omega}_i) D^*(-\hat{s}; \omega'_i, \bar{\omega}'_i)$ $D(-\hat{s};\omega_i,\bar{\omega}_i) = \int d(n_+p_i)d(n_-\bar{p}_i) C(n_+p_i,n_-\bar{p}_i)$ $\times J(n_+p_i, x_a n_+ p_A; \omega_i) \, \bar{J}(n_- \bar{p}_i, -x_b n_- p_B; \bar{\omega}_i)$ $d^4x \, e^{i(x_a p_A + x_b p_B - q) \cdot x} \, \widetilde{S}(x; \omega_i, \bar{\omega}_i, \omega_i', \bar{\omega}_i')$ NLP tactorization $\times Q^2 \int \frac{d^3 \vec{q}}{(2\pi)^3 \, 2\sqrt{Q^2 + \vec{q}^2}} \, \frac{1}{2\pi}$ $x_a n_+ p_A$ $n_+p_i, n_-\overline{p}_i \sim O(1)$ $\omega_i, ar{\omega}_i \sim O(\lambda^2)$

NLP quark-gluon interaction: Beneke et al 2002 $\mathcal{L}_{2\xi}^{(2)} = \frac{1}{2} \bar{\chi}_c x_{\perp}^{\mu} x_{\perp}^{\nu} \left[i \partial_{\nu} i n_{-} \partial \mathcal{B}_{\mu}^{+} \right] \frac{\psi_{+}}{2} \chi_c$ $J^{\mu\rho}_{2\xi;\alpha\beta,abde}(n+p,n+p';\omega) = -\frac{g^{\mu\rho}_{\perp}}{n+p}\delta(n+p-n+p')\delta_{\alpha\beta}\delta_{ad}\delta_{eb}$ χ_c Field definition of radiative jet function NLP jet function $i \int d^4z \, e^{i\omega(n+z)/2} \mathbf{T} \left[\chi_{c,\alpha a}(tn_+) \bar{\chi}_{c,d}(z) \frac{\eta_+}{2} \chi_{c,e}(z) \right]$ $= 2\pi \int du \, \widetilde{J}_{\alpha\beta,abde}(t,u;\omega) \, \chi^{\rm PDF}_{c,\beta b}(un_+)$ $\mathcal{B}^{\mu}_{\pm} = Y^{\dagger}_{\pm} \left[i D^{\mu}_s Y_{\pm} \right]$ del Duca 1990 Bonocore et al '15,'16

$$\begin{split} \text{NLP factorization} \\ & \int \mathcal{N}_{a} \mathcal{P}_{a} \mathcal{P}_{b} \psi(0) = \int dt \, d\bar{t} \, \tilde{C}^{A0}(t, \bar{t}) \left(\begin{array}{c} \mathcal{O}(1) \\ \mathcal{P}_{a}(t, \bar{t}) \\ \mathcal{P}_{a}($$

Soft function at NLP

$$B_{\pm}^{\mu} = Y_{\pm}^{\dagger} [D_{D}^{\mu}Y_{\pm}^{\mu}]$$

$$B_{\pm}^{\mu} = Y_{\pm}^{\dagger} [D_{D}^{\mu}Y_{\pm}^{\mu}]$$

$$B_{\pm}^{\mu} = Y_{\pm}^{\dagger} [D_{D}^{\mu}Y_{\pm}^{\mu}]$$

$$B_{\pm}^{\mu} = Y_{\pm}^{\dagger} [D_{D}^{\mu}Y_{\pm}^{\mu}]$$

$$S_{\pm}(n, \omega) = \int \frac{dx^{0}}{4\pi} \int \frac{d(n_{\pm}z)}{4\pi} e^{iu^{0}\Omega/2 - iu(n_{\pm}z)/2} \frac{1}{N_{c}} \ln(0)\tilde{S}_{\pm}(z^{0}, z_{-})|0|$$

$$S_{\pm}(n, \omega) = \frac{\alpha_{c}C_{\pm}}{2\pi} \left\{ \theta(\Omega)\delta(\omega) \left(-\frac{1}{\epsilon} + \ln \frac{\Omega^{2}}{M_{c}} \right) + \left[\frac{1}{\omega} \right]_{\pm} \theta(\omega)\theta(\Omega - \omega) \right\}$$
A puzzle: divergence at LO

RG condition

$$\begin{split} S_{2\xi}(\Omega,\omega) &= \frac{\alpha_s C_F}{2\pi} \left\{ \theta(\Omega)\delta(\omega) \left(-\frac{1}{\epsilon} + \ln\frac{\Omega^2}{\mu^2} \right) + \left[\frac{1}{\omega} \right]_{\perp} \theta(\omega)\theta(\Omega - \omega) \right\} \\ &+ \int d\Omega' \int d\omega' Z_{2\xi,2\xi}(\Omega,\omega;\Omega',\omega') S_{2\xi}(\Omega',\omega') |_{\text{bare}} \\ &+ \int d\Omega' Z_{2\xi,x_0}(\Omega,\omega;\Omega') S_{x_0}(\Omega') |_{\text{bare}} \\ Z_{2\xi,2\xi}(\Omega,\omega;\Omega,\omega') &= \delta(\Omega - \Omega')\delta(\omega - \omega') + \mathcal{O}(\alpha_s), \\ Z_{2\xi,x_0}(\Omega,\omega;\Omega') &= \frac{\alpha_s C_F}{2\pi} \frac{1}{\epsilon} \delta(\Omega - \Omega')\delta(\omega) + \mathcal{O}(\alpha_s^2) \end{split}$$

function the right-hand side, resulting in a finite, renormalized soft The mixing term subtracts the divergent part of the first term on

subleading pole Under assumption that the off-diag has only $S_{2\xi}^{(2)} + Z_{2\xi x_0}^{(1)} S_{x_0}^{(1)} + Z_{2\xi x_0}^{(2)} S_{x_0}^{(0)} + Z_{2\xi 2\xi}^{(1)} S_{2\xi}^{(1)} = \text{finite}$ $S_{2\xi}^{(2)} - \frac{1}{4} Z_{2\xi x_0}^{(1)} \left(3 Z_{2\xi 2\xi}^{(1)} + Z_{x_0 x_0}^{(1)} \right) S_{x_0}^{(0)} = \mathcal{O}\left(\frac{1}{\epsilon^2}\right)$ Known from 1-loop Same as LP soft fun. Check

$\begin{array}{l} \text{RG eq. of soft fun.} \\ \frac{d}{d \ln \mu} \left(\begin{array}{c} S_{2\xi}(\Omega, \omega) \\ S_{z_0}(\Omega) \end{array} \right) = \frac{\alpha_s}{\pi} \left(\begin{array}{c} 4C_F \ln \frac{\mu}{\mu_s} \\ 0 \end{array} \right) \left(\begin{array}{c} S_{2\xi}(\Omega, \omega) \\ S_{z_0}(\Omega) \end{array} \right) \\ \frac{d}{d \ln \mu} \left(\begin{array}{c} S_{2\xi}(\Omega, \omega) \\ S_{z_0}(\Omega) \end{array} \right) \\ \frac{M}{2\xi} \left(\Omega, \omega, \mu \right) = \frac{2C_F}{\beta_0} \ln \frac{\alpha_s(\mu)}{\alpha_s(\mu_s)} \exp \left[-4S^{\text{LL}}(\mu_s, \mu) \right] \theta(\Omega) \delta(\omega) \\ \frac{\alpha_s \ln \frac{\mu}{\mu_s}}{\alpha_s (\mu_s)} \alpha_s \ln^2 \frac{\mu}{\mu_s} \end{array} \\ \text{Similarly, for the hard function} \\ H(Q^2, \mu) = \exp \left[4S(\mu_h, \mu) \right] \\ \frac{\alpha_s \ln^2 \frac{\mu}{\mu_s}}{\alpha_s \ln^2 \frac{\mu}{\mu_s}} \end{array}$

$\begin{split} \Delta_{ab}(z) &= \frac{\hat{\sigma}_{ab}(z)}{z} & S_{K1}(\Omega) = \frac{\partial}{\partial \Omega} \partial_{\vec{x}}^2 S_{K3}(\Omega) &= \Omega S_0(\Omega, \vec{x})_{ \vec{x}=0} & S_{K2}(\Omega) = \frac{\partial}{\partial \Omega} \partial_{\vec{x}}^2 S_{K2}(\Omega) \\ &= \frac{3}{4} \Omega^2 \frac{\partial}{\partial \Omega} \\ &\sum_{i=1}^3 S_{Ki}(\Omega) = 2 \frac{\alpha_s C_F}{\pi} & \text{No} \end{split}$	$[x_{1}p_{1} + x_{2}p_{2} - q]^{0} = p_{X_{s}}^{0} = \sqrt{\hat{s}} - \sqrt{Q^{2} + \vec{q}^{2}} = \frac{\Omega_{*}}{2} - \frac{\Omega_{*}}{\sqrt{z}}$ The soft function expands $S_{\text{DY}}(Q(1-z)) + \frac{1}{Q}S_{K1}(Q(1-z)) + \frac{1}{Q}S_{K2}(Q(1-z)) + \frac{1}{Q}S_{K$	Kinematic correct
$rac{\partial}{\partial n^2} \partial_{\vec{x}}^2 S_0 \left(\Omega, \vec{x}\right)_{ \vec{x}=0},$ $\Omega^2 rac{\partial}{\partial \Omega} S_0(\Omega, \vec{x})_{ \vec{x}=0}$ No kine.cor.	$\frac{2}{2} - \frac{\vec{q}^2}{2Q} + O(\lambda^6)$ 1 - z) + $\frac{3}{4}Q(1-z)^2 + O(\lambda^6)$ 1 - z)) + $O(\lambda^4)$	y of the soft

Final results

 $\mu_h \sim Q$

 $\Delta_{\rm NLP}^{\rm LL}(z) = -\exp\left[4S^{\rm LL}(\mu_h,\mu_c) - 4S^{\rm LL}(\mu_s,\mu_c)\right] \times \frac{8C_F}{\beta_0} \ln\frac{\alpha_s(\mu_c)}{\alpha_s(\mu_s)} \theta(1-z)$ $\mu_c \sim Q \sqrt{1-z}$ $\mu_s \sim Q(1-z)$

the general scale dependence by the AP splitting kernels Why we evolve the hard/soft function to the jet scale? We use the LO jet function. Recover

$$\frac{d}{d\ln\mu}\hat{\sigma}_{ab}(z,\mu) = -\sum_{c} \int_{z}^{1} dx \left(P_{ca}(x)\hat{\sigma}_{cb}\left(\frac{z}{x},\mu\right) + P_{cb}(x)\hat{\sigma}_{ac}\left(\frac{z}{x},\mu\right) \right)$$

$$P_{ab}^{\rm LP}(x) = \left(2\Gamma_{\rm cusp}(\alpha_s) \frac{1}{[1-x]_+} + 2\gamma^{\phi}(\alpha_s)\delta(1-x)\right)\delta_{ab}$$
$$P_{ab}^{\rm NLP} = \gamma_{ab}^{\rm NLP}(\alpha_s)$$

$$\begin{split} &\frac{d}{d\ln\mu}\Delta_{\rm NLP}(z,\mu) \\ &= -4\left[\Gamma_{\rm cusp}(\alpha_s)\left(\ln(1-z)-\gamma_E-\psi\left(1+\frac{d}{d\ln(1-z)}\right)\right)+\gamma^{\phi}(\alpha_s)\right]\Delta_{\rm NLP}(z,\mu) \\ &+ K(z,\mu) \\ &+ K(z,\mu) = -2\gamma_{qq}^{\rm NLP}(\alpha_s)\int_{z}^{1}dy\,\Delta_{\rm LP}\left(y,\mu\right) - 4\Gamma_{\rm cusp}(\alpha_s)(1-z)\Delta_{\rm LP}(z,\mu) \end{split}$$

 $\Delta_{\rm NLP}^{\rm LL}(z,\mu) = \exp\left[4S^{\rm LL}(\mu_h,\mu) - 4S^{\rm LL}(\mu_s,\mu)\right] \times \frac{-8C_F}{\beta_0} \ln\frac{\alpha_s(\mu)}{\alpha_s(\mu_s)}\,\theta(1-z)$

 $L_{\mu} = \ln \mu/Q$

$$\begin{split} \Delta_{\rm NLP}^{\rm LL}(z,\mu) &= \exp\left[-2\frac{\alpha_s C_F}{\pi}\ln^2\frac{\mu}{\mu_h}\right] \exp\left[+2\frac{\alpha_s C_F}{\pi}\ln^2\frac{\mu}{\mu_s}\right] \\ &\times (-4)\frac{\alpha_s C_F}{\pi}\ln\frac{\mu_s}{\mu}\theta(1-z) \\ \lambda_{\rm NLP}^{\rm LL}(z,\mu) &= -\theta(1-z)\left\{4C_F\frac{\alpha_s}{\pi}\left[\ln(1-z)-L_{\mu}\right] \\ + 8C_F^2\left(\frac{\alpha_s}{\pi}\right)^2\left[\ln^3(1-z)-3L_{\mu}\ln^2(1-z)+2L_{\mu}^2\ln(1-z)\right] \\ &+ 8C_F^3\left(\frac{\alpha_s}{\pi}\right)^4\left[\ln^5(1-z)-5L_{\mu}\ln^4(1-z)+8L_{\mu}^2\ln^3(1-z)-4L_{\mu}^3\ln^2(1-z)\right] \\ &+ \frac{16}{3}C_F^4\left(\frac{\alpha_s}{\pi}\right)^4\left[\ln^7(1-z)\right] \\ &+ 8L_{\mu}^4\ln^3(1-z)\right] \\ &+ 8L_{\mu}^4\ln^3(1-z)\right] \\ &+ 8L_{\mu}^4\ln^5(1-z) - 9L_{\mu}\ln^8(1-z) + 32L_{\mu}^2\ln^7(1-z) - 56L_{\mu}^3\ln^6(1-z) \\ &+ 48L_{\mu}^4\ln^5(1-z) - 16L_{\mu}^5\ln^4(1-z)\right] \\ &+ 8L_{\mu}^4\ln^5(1-z) - 16L_{\mu}^5\ln^4(1-z)\right] \\ &+ \theta(\alpha_s^6 \times (\log)^{11}) \end{split}$$
(1991)

Expansion

Summary and outlook

- The LP threshold fact. & res. was developed in We provide an NLP resummation of the leading logs in 1987/89, each part extended to higher accuracy later.
- the soft-collinear effective theory.
- The LO divergences in the soft function are cancelled by an auxiliary soft function.
- There is no kinematic power correction.
- The resumed result has no leading log at the jet scale.
- At a general scale, we reproduce the first few orders.

Summary and outlook

Extension to NLL is interesting and will reveal the full difficulty and complexity of NLP resummation, which can be seen from the anomalous dimension

of NLP operators. M.Beneke, M.Garny, R.Szafron, JW '18

Thank you for your attention!