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Toward Microscopic Understanding
In Condensed Matter Physics

 1st Macroscopic Properties

• bulk quantities: heat capacity, heat conductivity, transport coefficients, …
• phase structure
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Toward Microscopic Understanding

 2nd Microscopic Properties

• effective mass
• band structure, gap structure
• various correlations
• spectral function

 3rd Microscopic Understanding

• (Normal) Superconductor: BCS theory
• Fractal Quantum Hall Effect: Laughlin wave function
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In QGP Physics

 1st Macroscopic Properties

• bulk quantities: heat capacity, heat conductivity, transport coefficients, …
• phase structure

In Condensed Matter Physics

 2nd Microscopic Properties

• effective mass, band structure
• gap structure
• various correlations
• spectral function

 3rd Microscopic Understanding

• (Normal) Superconductor: BCS theory
• Fractal Quantum Hall Effect: Laughlin wave function

We are HERE

We are HERE
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Past and Now of QGP
 Past weakly interacting soup of quarks and gluons

Collins and Perry (1975)
expected from asymptotic freedom of QCD

 Now strongly interacting system of quarks and gluons
from small η/s of QGP

RHIC experiments 2004~
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nvmlη =
This is obtained by dilute gas approximation

This approximation is not valid for strongly interacting cases

• Why small η/s ↔ strongly interacting system?
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Qualitative Understanding of Shear Viscosity

σ
x

y

strongly interacting case

shear stress (Fx) = px that crosses unit surface (σ) per unit time : small

Fx
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Qualitative Understanding of Shear Viscosity

σ

x

y

weakly interacting case

more px crosses unit surface (σ) per unit time : larger stress 
= larger shear viscosity

Fx
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Landau’s Insight
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Landau’s Insight
Strongly interacting system

“Mean Free Path” : so small

Quantum mechanically,
concept of the number of particles
loses its meaning

“Mean Free Path” makes sense
only when it is much larger
than de Broglie wave length 

Hydrodynamics
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Future of Hydrodynamics?
 Although “Mean Free Path” argument kills a lot of transport models,

hydrodynamics is not the end

Hydrodynamics should be compared to Jellium Model
in condensed matter physics

 What is the next step?

 A possible answer: microscopic structure of jellium (or fluid)

For example, structure function:
Fourier transform of spatial correlation

Thoma, QM2005
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How can we see interaction on Lattice? 

Naïve questions: Isn’t there interaction in hadron phase or in the vacuum?

Doesn’t there exist trace anomaly in the vacuum (strongly interacting!)?

• In the following, µB=0

4

3e pI
T
−

= : “Interaction Measure” or “Trace Anomaly”
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What is shown by Lattice Calculation
On the lattice, vacuum subtraction is carried out

Since QCD vacuum is more stable than perturbative vacuum, 

00
0 QCD vacuum

0 QCD vacuum

0

0ii

e T

p T

= <

= >

From Lorentz invariance of the vacuum,

0QCD vacuum
T e gµν µν=

What is plotted as e or p: vacuum subtracted

00 00

0

0

T T

ii ii

T T

e T T

p T T
=

=

= −

= −
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Where is interaction?

00 00

0T T
Ts e p T T

=
= + = −

0

ii ii

T T
T T

=
  + −  

00 ii

T T
T T  = +  

Entropy density s is not affected by this subtraction
(From Nernst’s theorem: s=0 at T=0)

s has a direct physical meaning:       density of degrees of freedom  ∝

Suppose a sudden phase transition from free massless pion gas
to free quark-gluon plasma takes places at Tc

Then how does interaction measure behave?

00T
T e gµν µν

=
= i: not summed
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Thermodynamics

cT T

3s T

free pions

free QGP

cT T

( ) 43e p T−
peak structure:
change of d.o.f.

does not measure
interaction

Then, where is interaction?

all needed is entropy density (entropy monism)

Furthermore, e-3p is increasing
if d(T) is increasing (s(T)=d(T)T3)

Hatsuda and M.A. (1997)

00
( ) ( )

( ) ( ) ( )

T
p T s t dt p

e T Ts T p T

= +

= −
∫ with p0=0 (vacuum subtraction)
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Slow Fall-off of “Interaction Measure”

2

1
T

∝

cT T

( ) 43e p T−

Lattice

Sudden Change of d.o.f. 

4

1
T

∝

Since all needed is s(T), this can be explained by the behavior of s(T)

T

3s T

Slow rise of d(T)=s(T)/T3

2

1
T

∝
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Trace Anomaly
 Trace Anomaly (up to fermion contribution)

,( )
2

a agT G G
g

µ µν
µ µν

β
=

, 4

0
~ (360MeV) ( ) 0a as

T
G G gµν

µν
α β
π =

<

decreases around the phase transition,a a

T
G Gµν

µν

,( )
2

a a

T T

gT G G
g

µ µν
µ µν

β
=

approaches zero
(and eventually becomes positive)

identity
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Trace Anomaly?

What we are seeing is

, ,0
4 4 0

( )
2

a a a aT T
T T

T T g G G G G
T gT

µ µ
µ µ µν µν

µν µν
β=

=

−
 = − 

>0decreasing

 This peak is due to “disappearance or decrease” of Trace Anomaly

 It is not appropriate to interpret this peak as appearance of “Trace Anomaly”

Although this quantity is also
called “Trace Anomaly”,
this quantity is not trace anomaly
without vacuum subtraction
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Although QGP is strongly interacting,

2

1
T

∝

In conclusion, we cannot interpret this figure is showing
that QGP around Tc is strongly interacting or anomalous
(in the meaning of field theory)
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Toward Microscopic Understanding
In Condensed Matter Physics

 1st Macroscopic Properties

• bulk quantities: heat capacity, heat conductivity, transport coefficients, …
• phase structure
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QCD Phase Diagram 

CSC (color superconductivity)

QGP (quark-gluon plasma)

Hadron Phase

T

µB

• chiral symmetry breaking
• confinement

order ?

1st order

crossover

CP (critical point)~160  MeV

5-10ρ0

RHIC

LHC
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Conserved Charge Fluctuations
The original idea of conserved charge fluctuations

M.A, Heinz, Müller, Jeon, Koch (2000)

Quark-Gluon Plasma

Hadronization

Conserved charge fluctuations change only through diffusion 

Thus, in particular, they are not affected by phase transition
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Time Evolution of C.C. fluctuation

Freezeout

Quark-Gluon Plasma

Hadronization

In the ∆η dependence of C.C. Fluctuation, history of system is encoded
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Critical Phenomena + Time Evolution

Experiments cannot observe
critical fluctuation in equilibrium directly.

 Generation + Growth
Critical fluctuations tend to develop.
But, relaxation toward equilibration is slow around 
CP because of the critical slowing down.

 Disappearance by diffusion
Fluctuations developed at CP are diffused by the 
time evolution in later stage.
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Correlation Length of Non-Conserved Quantity

Berdnikov, Rajagopal (2000)
Nonaka, M.A. (2004)

Time evolution of correlation length
around CP with critical slowing down

~ distance from CP

1mσ
−

2 4.5 7
2 3 4~ , ~ , ~K K Kξ ξ ξ higher order cumulants are advantageous

usual argument

• This ξ is , not a conserved quantity (not diffusive mode)
• Conserved charge cumulants change more slowly
• In HI collisions, ξ and conserved charge cumulants are not synchronized
• Furthermore, conserved charge cumulants are scale dependent 23



Time Evolution of C.C. fluctuation

Freezeout

Quark-Gluon Plasma

Hadronization

In the ∆η dependence of C.C. Fluctuation, history of system is encoded

Conserved charge cumulants are scale dependent 
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Similarity with Balance Function

Pratt, QM2002

Information at Larger ∆y
= Earlier Stage

Information at Smaller ∆y
= Later Stage

Local Charge Conservation

Diffusion
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Critical Fluctuation and ∆η Dependence

CP

y

y

EarlierLater
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Critical Phenomena and Diffusive Mode

Soft mode of QCD CP

σ: fast damping

Evolution of baryon number density (slow and small k)

:parameters characterizing criticality

Effective Potential

cf. Onsager relation
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Parametrizing D and χ: critical + regular
Berdnikov, Rajagopal (2000)

Nonaka, M.A. (2004)
Stephanov (2011)

Mukherjee, Venugopalan, Yin (2015)
model-H (3d-Ising)


mapping to (T,µ) / time evolution

1D Bjorken expansion


 QCD CP at T=160MeV
 kinetic f.o. at T=100MeV

(reduced temperature)
critical
slowing downcrossover (r>0)

0

QGP hadron 0.5χ χ =
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Cumulant and Correlation Function

2nd order cumulant
(fluctuation)

correlation function

total charge charge density

1-dim case

1-to-1 correspondence
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Time Evolution 1, Fluctuation: No CP 

Sakaida, Fujii, Kitazawa, M.A. (2017)

C
D
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]

T [MeV]
χ

χ H
(T

)
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Time Evolution 1, Correlation: No CP

monotonically decreasing

monotonically
increasing

monotonically
increasing

Analytic
result

[fm
]

C
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]

T [MeV]

χ
χ H

(T
)
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Time Evolution 2, Fluctuation: With CP

 Non-monotonic ∆η dependence manifests itself
Robust experimental evidence of 
the existence of a peak in χ(T)
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]
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χ
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With Narrower Critical Region

non-monotonic
behavior

Peak in
[fm

]
C

D
(T

)[
fm

]

T [MeV]

χ
χ H

(T
)
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Time Evolution 2, Correlation: With CP

non-monotonic ∆y dep.

non-monotonic non-monotonic
Analytic
result
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Comparison: Fluctuation and Correlation

monotonic
no information onAnalytic

result
is better to see non-monotonicity( )C y

• Non-monotonicity in K(∆y) disappears
• But C(y) is still non-monotonic
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Away from CP (Crossover)

Away from the CP: Weaker critical slowing down

• Signal of the critical enhancement can be clearer along
paths away from the CP
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0 µ

T

Hadrons

Mapping from 3-d Ising to QCD
3d Ising

c

c

T Tr
T
−

=
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Away from CP (Crossover)

Away from the CP: Weaker critical slowing down

• Signal of the critical enhancement can be clearer along
paths away from the CP
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Blurring: loss of y-η correspondence

hadron phase

QGP phase

time t

position z

y =η in Bjorken picture

is blurred in one particle
distribution owing to 
thermal motion

Accordingly, conserved charge
fluctuation (two particle correlation)
is modified

Blurring in rapidity
space takes place !

y: (momentum space) rapidity, η: space-time rapidity
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Similarity with Balance Function

Pratt, QM2002

Information at Larger ∆y
= Earlier Stage

Information at Smaller ∆y
= Later Stage

Local Charge Conservation

Diffusion
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Blurring: loss of y-η correspondence

hadron phase

QGP phase

time t

position z

y =η in Bjorken picture

is blurred in one particle
distribution owing to 
thermal motion

Accordingly, conserved charge
fluctuation (two particle correlation)
is modified

Blurring in rapidity
space takes place !

Low energy collision (such as BES)

y-η relation: more complex

This should be taken into
account in interpretation

y: (momentum space) rapidity, η: space-time rapidity
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Future 1: from Lattice to Dileptons

1. Quark dispersion relation on the Lattice

Kaczmarek et al. (2012)

 2 pole fit with widths (Not HTL calculation)

T c c0.768(0.725) at 1.5 (3 )m T T T T= =

Nonperturbative calculation of dilepton production

Nonperturbative
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Future 1: from Lattice to Dileptons 
2. Ward Identity and Dilepton production rate

3. Dilepton Yield

Gauge Symmetry
, ( , )R µ

µ ωΠ q
Ward identity

,
3 4 2

1 1 Im ( , )
12 1

Rd
d d q Q e

µ
µβω

α ω
ω π
Γ

= Π
−

q

production rate

• The result happened to be 
close to that by HTL

• Vertex correction: important
43
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Future 2: Coupling of Heavy Quarks and Matter

Ikeda, Kitazawa, M.A. (2017)

Spectral Function
at p=0 Dispersion Relation for T and L modes

2 2 2( ) (0)E E= +p p also at finite T?

Residue   unchanged up to T=1.62Tc

ˆ2 sin i
i

pp
a Nσ σ

π 
=  

 

Lattice Result (J/ψ)

Shift of peak position?

44



Future 2: Coupling of Heavy Quarks and Matter

Note: Debye Screening assumes     small eϕ(r)  and static matter

On Lattice, Translational Invariance is lost

Energy Momentum Tensors: Noether Currents of Translational Symmetry

A lot of difficulty met on Lattice: 
Definition of Energy Momentum Tensor on Lattice?
Supersymmetry on Lattice?

A way to restore Translational Invariance: Gradient Flow

 Coupling of Heavy (anti)Quarks with Matter?

• Stress Tensor Distribution around Quark-Antiquark Pair? 

Lüscher (2010) 45



Future 2: Coupling of Heavy Quarks and Matter

Eigenvectors of Tij (i,j=1,2,3) and 
Signs of Eigenvalues

One eigenvector: perpendicular to yz-plane

(U(1) case)

 Flux Tube is visible

Finite T analysis: in progress

T=0 Heavy quark and antiquark

Yanagihara et al. (2018)
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In QGP Physics

 1st Macroscopic Properties

• bulk quantities: heat capacity, heat conductivity, transport coefficients, …
• phase structure

In Condensed Matter Physics

 2nd Microscopic Properties

• effective mass, band structure
• gap structure
• various correlations
• spectral function

 3rd Microscopic Understanding

• (Normal) Superconductor: BCS theory
• Fractal Quantum Hall Effect: Laughlin wave function

We are HERE

We are HERE

Next Decade(s)

correct understanding of data: needed
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