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I. Motivation

Quark Model
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Deep in-elastic scattering (DIS) experments and the Parton model
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However, in QCD, the current quark masses are the fundamental
Parameters of the Lagrangian

N . 1 )
LQCD :qu (lyﬂDﬂ —m,)q, _ZGWGﬂ ,
k=1

which should be determined theoretically rather than experimentally,
since quarks are confined inside hadrons and are not observed as
physical particles.



Current quark masses vs. hadron masses (PDG2012)

m, () m, (1) m, (u) m, () m, (44)
u=26GeV u=2GeV u=2GeV HU=m, H=m,

2.37°71(MeV) 4.8727(MeV) 95(55)(MeV) 1.275(25)(GeV) 4.18(3)(GeV)

| =1 | =1/2 1=1/2 |[1=0
=0zt | 2% | =~ | K" | K| K" | K| 7
M(MeV) | 139.6 135.0 | 139.6 | 493.7 | 497.6 | 497.6 | 493.7 | 547.5
| PpT P T K KO K? | K| @
M(MeV) 7755 891.7 | 896.0 | 896.0 | 891.7 | 782.7
=yt = | = p | n | = | s | A
M(MeV) | 1189.4 | 1192.6 | 1197.4 | 938.3 | 939.6 | 1314.8 | 1321.3 | 1115.7

Open question: How do hadrons acquire their large masses ???




II. A brief introduction to Lattice QCD

Wick Rotation from Minkowski Space to Euclidean Space
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QCD on a Euclidean Space-time 6rid

- Space-time discretization Lattice spacing a
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MC Simulation——Importance Sampling

Taking @ SIVv V] as a probability distribution, an ensemble
of configurations are generated from MC simulation. This is the
procedure that eat the computation resources mostly.

After the generation of configurations, the
functional integral

_ 1 _ _
(O(A,.7.y)) =— [ [DA,DFDy1exp(=S (A, 7.4 ))O(A,.77.¥)
becomes the much simpler arithmetic average:

<O >|v|c - Iil-_lzjll O,

* Generally speaking, the quantites that are most commonly calculated
are Green's function, say, the vacuum expectation values of field
operators defined at different space-time points.



Quenched and Unquenched

Z = [DUD gD ye "™ = [DU det Me ™
_ J‘ DUe ~Sy+TrinM

On the lattice, M is a very large matrix, such that the calculation
of its trace is very expensive in the MC simulation. A way out this
difficulty is to take the approximation

det M [U ] = const .

Theoretically, this means that we set the sea quark mass to be
infinitely large such that they decouple from the gauge field. In
other words, we will ignore the vacuum polarization diagram, say,
the effects of sea quarks.



(A) Quenched QCD: quark loops neglected

(B) Full QCD



Chiral Fermions

* Ginsburg-Wilson relation- - -chiral symmetry on lattice
7:D+Dy,=aDy.D

- Chiral tranformation in the continuum

y — ey,

v — e’

 Chiral transfromation on the lattice

W —> aifrs(1-ab /2)

v — pe

v, The lattice action is invariant

i0y . (1-aD /2) if GW relation holds for D



* Two types of fermion actions that satisfy GW relation:

overlap fermion
domain-wall fermion

* Free of fermion doubling + chiral

- But computation is much more expensive.



Monte Carlo Simulation of Lattice QCD

The equivalences between a Euclidean field theory and Classical Statistical Mechanics.

Euclidean Field Theory

Classical Statistical Mechanics

Action
unit of action A
Feynman weight for amplitudes

—~S/h _ e-f cdifh
Vacuum to vacuum amplitude

f D :ﬁB-S Ik
Vacuum energy
Vacuum expectation value ({}l ﬂlﬂ)
Time ordered products
Green'’s functions {GlT[lﬂl . ﬂnllﬂ}
Mass Af
Mass-gap
Mass-less excitations
Regularization: cutoff A
Renormalization: A — eo

Changes in the vacuum

Hamiltonian
units of energy 3 = 1/kT
Boltzmann factor e—FH

Partition function z con e—HH

Free Energy

Canonical ensemble average (Iﬂ}

Ordinary products

Correlation functions {lﬂl e li'Jn}
correlation length £ = 1 /M

exponential decrease of correlation functions
spin waves

lattice spacing «

continuum limit ¢ = 0

phase transitions

Due to the similarity, we can borrow the methods of statistical
mechanics to study lattice QCD, such as Monte Carlo simulation.




Present status of Lattice QCD

7 = f[DU]e—Sg(UHTrmM[U]

Trln M[U] ~ const. = Queched Approximation
m;"’z #m, = Partially Quenched A

M,u[U]# M[U] = Mixed Action Dynamical

Calculation

;

Otherwise, a unitary theory of full QCD on the lattice

Observables: VEV of operators, such as Green's functons.
<O>= J‘[DU ]:)(U )e—Sg(U)+TrInM[U] — %Z Oi

Monte Carlo simulation, importance sampling



Lattice QCD

Dynamical

configurations
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Probes: valence quark propagators, etc.,
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Re-organization of LQCD Community

Lar'?e LQCD Collabortions generating dynamical
configurations

MILC: Symanzik improved gauge
(2+1) flavor staggered fermion.
CP-PACS: RG improved gauge
(2+1) flavor clover fermion
JLQCD: RG improved gauge
(2+1) flavor overlap fermion
RBC&UKQCD: DBW?2 gauge
(2+1) flavor domain wall fermion
ETMC: improved gauge
(2+1) flavor twisted-mass fermion

Smaller groups for physical projects based on
these dynamical configurations -




Large scale numerical computation on
supercomputers

Large international LQCD collaborations



ITI. Meson mass decomposition
X. Ji, Phys. Rev. Lett. 74, 1071 (1995)

Let’ start from the QCD energy-momentum density tensor,
™" = %aﬁwf“‘ﬁ”")w + ;-,Tr(g“” F? — FkeFY)
TW = TV.U-* mﬂﬁw = U-

Due to the renormalization, it is found that the tensor
has a trace part,

2 1 = Blg) o
po_ oy PSS
= Lo [ (15 i 20
The traceless part can be decomposed as,
TH =T + T,

T =SB ym
%g‘“’”FE - F*“"“Fg.
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For a meson state |p> with the normalization,

(P|P) = (27)32E43(0)

ne has, -
Ty~ PUPST0DIP) oo,
(P|P) - |
(P|TH |P) = 2P+ P
(PIT*|PY = 2PHPY — ;Tg””ME,
(PIT*|PY = %g*”’Mﬂ.
such that, (T = j_ M.
@y = ‘g



The above expressions are general and independent of
the scale. If we decompose further,

(TP = IMa(s?),
(TP) = TM(1-a())
Now we define,

T =mpyp  (T9) = Mb

Rearrange the QCD Hamiltonian using the equation of motion,
(i D" —mpp =0,
Hgep = /d‘?';f:"l}%%n(ﬂ,;ﬁ‘] — Hg + Hy+ H, = Hy + Hy, + Hy + H,
Hp = [ &% ¢(—iDeya)y = Hy + Hp,
= [ &% (=D 1)y, Ho = [ &5

- B?)

2 2 3"‘
_ [ & L(B2 + B?), Ha_fd ety



IV. Numerical details

Hgep = /dgfl'%%n(ﬂ,f) = Hp + Hg + H, = Hq + Hyp + Hg + H,
H, = [ &5 §(~iD -7y, Hon = [ a5

= [ &#F L(E? + B?), Ha_fd'?"'lﬁﬂ — B?)

« The key task is to calculated the matrix elements of these
operators between hadron states

 One has to check the equation of motion of quarks in a hadron.

* The quark bilinears in the operators above should be renormalized.




1. Lattice setup

Lattice formulation:
overlap fermions as valence quarks;
2+1-flavor domain-wall fermion configurations
(generated by RBC/UKQCD Collaboration)

LPxT ro/a(GeV) m™a mi,a mi,a
24 x 64 4.126(11) 0.00315 0.005 0.04

ro(fm) a '(GeV) Zn Za  Ncongs
0.458(11) L77(5) 0.884(7) L110(1) 77

Overlap fermion operator for the valence quarks

pD,,

Pe=1"D.0p2

with D, = 1 4+ y5€e(v5Dwi(p))

Matching the continuum form: D. = (1+0(a?) Y., ¥ Dy

Quite a lot quark masses can be calculated simultaneously.



2. Test of the equation of motion of quarks in a hadron

The classical equation of motion of quarks in the presence of a

background color field, 1.5 7S
(D" —m)p =0 1.4 A
1.3
For a given field {U ﬂ(X)} i s
1.2 g
(i R
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... (HZ(y)(D,+m)(X, V) (2)|H)...
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i Zp Hyp = Zp.H,+ H,,,
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Zp — .
E (Hp — H,)




3. Non-perturbative renormalization of quark bilinears

The renormalization constants of quark bilinears are being calculated
using a non-perturbative scheme (RI/MOM).

@ [ he renormalization condition in the RI-MOM scheme is
[G. Martinelli et al., Nucl. Phys. B 445 (1995) 81]

1
lim Z IZ()—Tl[!'\U( ) tree(,!'J)_l]pzzrug = 1.

mq—>0 q

Zg is the quark field renormalization constant: g = Z;Xzfy‘fr,

Zo is the renormalization constant for the operator O: Op = Zn O,

1t is the renormalization scale.
e Ao(p) is the amputated forward Green function

No(p) = S~H(p)Go(p)S*(p).

where S(p) is the quark propagator.
@ [he calculation has to be done in a fixed gauge, say, Landau gauge.

The method is supposed to work in the window

AQCD < << ?T/a.




@ In the Rl scheme,

—i 05~(p)
R — Iy i i _
q (Ju) 48 1 [ . ()PV -y

@ In the RI" scheme, Z; is given by

1

Z () = =Tr [S7Hp) S (p)]

12 pr=p?’

where S52Y(p) is the free overlap quark propagator.

@ We obtain the renormalization constant of the local axial vector
current Zﬁv" from Ward ldentities, which equals to ZAR" in the RI
scheme. Then



@ Using
Zp0,A, = 2Z,mgZpP

and Z,, = Z‘ET.1 for overlap fermions, one has
@ If the pion is at rest, then from the above one gets

Zn — 2mg(0|P|m)
my (0| Ag|m)

e From 2-point functions Gpp(p = 0,t) = > (0| P(x)P(0)|0) and
Ga,p(P=0.t) = +(0|A4(x)P(0)|0}), one obtains

Za = lim
mg—0,t—oc My GA:lP(



24" w 64 Lattice with Overlap Fermions, £y .m0.005-0.04 2% w 64 Lattice with Overlap Fermions, £y, m0.004-40,03

13 T T T T 13 T T T T
125 - 1235 -
12| ZAI;.'.“".\] =|:I_;| = l.m-}l} B 10F Z_d_l'ﬂ'l‘q =0 = 1/080(1) -
115F - 115 F -
b esmn ..
_ 11F - - e - W m oW ] - 11k |
I [ e ——— - =
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o A straight line fit in am, € [0.00809,0.02430] on the coarse lattice.
@ am, € [0.00585,0.01520] on the fine lattice.
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@ To go to the chiral limit, we use the following to fit and take B:

5

%5 = Gamgy T Bt G (ama)

[Blum et al. 2001, Aoki et al. 2007]
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BRE ‘
Zoao—§
1 cow ]
Sl T % MY, hqu=750 MeV
L &1 «: S, ran to 2 GeV¥
B 3 o: 1.13g7(82), [5.8]
C 1 L.1476(53), [41.8]
0.8 O [

@ [ he conversion ratio
3-loops. [Chetyrkin

@ The running of 251}1_5

o Zs = A+ B - a%p? to extrapolate away O(a?p?) discretization errors.

olnfil

s

m —

2 1
-.azp2=Z“u.2pi

from Rl to MS scheme
and Retey 1999]

uses anomalous dimension to 4-loops.

Is to
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ensemble <005 c01 c02 my =10
z2'5(2 GeV)  1.1433(54)  1.1397(82)  1.1581(74)  1.1308(87)
ZMS(2 GeV)  1.164(14) 1.168(22) 1.194(28) 1.141(25)
ensemble foo4 006 foos m; =0
ZMS(2 Gev)  1.0607(66)  1.0747(64)  1.077(10)  1.0597(64)
ZM5(2 GeV) 1.068(21) 1.093(19) 1.105(24) 1.066(21)




To summarize

@ Using the RI-MOM scheme, we calculate the renormalization
constants for overlap quark bilinears on domain wall configurations.

@ Zs = Zp and Zy = Zu are confirmed as expected.

@ [ he conversion from the Rl scheme to the MS scheme is the main
source of error for Zs.

@ Zm =1/Zs is used for the determination of strange and charm quark
masses.

o We find m

" =

15(2 GeV)=0.104(9) GeV and mM5(2 GeV)=1.107(38)



4. The calculation and results

Hp = [d*F (—iD¢ya)y = Hy + Hp,
= [ &5 §(~iD - 7)9, Ho = [ &5
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Equal mass case
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Un-equal mass case
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The correlation of the motion of the two quarks in a meson




The gluonic contribution fo meson masses

GeV

Mass type 5 Mass fraction
Quark energy Eq 3(a —b)/4
Cuark mass - b
Ouark total Fo tot. (3a + b) /4
Gluon energy B, 3(1L —a)/4
Trace anomaly F, (1 — &6)/4
4 4 ' o
35 | 35 | W
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The pseudoscalar mass decomposition in the chiral limit

Theoretical analysis predicts, in the chiral limit
(X.Ji, PRD52, 271(1995)),

]
1 H/Mps
Hq=0; Hm:_mps; 0.8 H?MPS
5 8 TH/Mps
3 1 0.6 HIMS
ngngS1 Hazgmps % 0.4 i—%sfﬁ@?

0.2 1




IV. Summary

Hadron mass can be decomposed into the components contributed
from quark masses, quark kenetic energy, gluon kenetic energy,
and the QCD trace anomaly.

. The mass components of pseudoscalar and vector mesons are
investigated in the framework of 2+1 full QCD lattice study.

. In the chiral limit, the lattice result is compatible with that from
theoretical analysis. Both quark components and gluon components
tend to zeor when the chiral limit is approaching.

. In constrast to the pseudoscalar, in the chiral limit, the vector
meson mass is contributed predominantly from the gluon conponents.

. For S-wave mesons made up of quarks heavier than strange quark,
the total gluon component is roughly 400-500 MeV and insensitive
to the quark masses.



Appendix: Direct calculation of gluon
components from quenched LQCD

'B ﬂ._gi:ﬁ]l) LE x T ZHq_mL_ ZHg
24 0222 8 x96 1.288(5) 1.0(2) 0.53(15)
2.8 0138 12° x 144 1.155(3) - -

Zy

L

Operators defined on the lattice should be renormalized even
though their continuum counterparts are scale independent.

Q-r:-r;:tt — 'fi_l1 Et';l [ﬂ}ﬂ

For gluonic operators, we use the glueball states to do the

non-perturbative renormalization
(Y.Chen et al, Phys. Rev. D 73, 014516 (2006))

G) | (ClO+IC)m  Zs| (GIO—|Chm Zr

5 32(0) 1.1(3) 13(5) 0.7(3)
T(E) 102(16)  1.0(2) 51(15)  0.53(15)

T(T2) 101(16)  1.0(2) 53(15)  0.51(15)
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Some information we can get:

CeV

08 r
0E
04+

uz-s"!

T
=5

T
—I-—I.C:

1. The 1S and 1P charmonium mass contributed by quarks
(including the quark mass and quark kinematic energy)
are around 2 GeV. This implies that the gluon component of
charmonium mass is substantially large.

2. The 1P-1S mass splittings are mainly due to the different

contributions of gluons.



D. The final results

* The charmonium mass components contributed by quarks
before the renormalization.

Em Eq Eq—tnt.
Te 1.554(4)  0.1836(4) 1.654(4)
Jfp | 1.509(4)  0.2507(6) 1.742(5)
xeo | 1.496(24) 0.260(4)  1.751(27)
xe1 | 1.453(30) 0.310(6)  1.776(34)
her | 1.477(33) 0.318(7)  1.789(38)
Yea | 1.62(10)  0.359(17) 1.99(11)

E_m, E_q, and E_gtot are calculated independently, and the
relation E_gtot=E_m+E_q is reproduced.



* The final results of 1S,1P charmonium mass components.

By . B B, M PDG
ne | 2.130(4) 0.53(12) 0.18(2) 2.84(13) 2.980
Jfp | 2.244(6) 0.56(13) 0.23(3) 3.03(14) 3.097
Yoo | 2.255(35) 0.95(24) 0.39(5) 3.59(24) 3.415
Xa1 | 2.287(44) 0.90(20) 0.39(7) 3.57(20) 3.511
her | 2.304(49) 0.82(17) 0.37(4) 3.50(17) 3.525
Xe2 | 2.56(14) 0.59(23) 0.33(6) 3.48(30) 3.556

It is impressive that the physical mass are reasonably
established by their separate components.

Obviously, the gluonic contribution is very large.

The 1P-1S mass splittings come mainly from the gluonic
contribution.

?2?? The connection to the valence charm quark mass

mCW(SGeV) =0.987GeV (lattice)
m.(m.) =1.27(11)GeV (1.273(6), lattice)



Thank Youl!
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