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Milestone of particle physics: discovery of Higgs Boson
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Higgs found. What’s next?

• Unfortunately, new physics still yet to be found at LHC

• If new physics do exist at TeV scale, we may need to scan every corner of new
physics parameter space, and dig it out from huge SM backgrouond

• It’s likely that new physics have strong impact to the Higgs sector: precise
measurement of the Higgs boson properties are of utmost importance!
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Production of Higgs at LHC

• Three major production mechanism

gluon-gluon fusion vector-boson fusion associated production
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[Higgs Working Group report]
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Experimental status

• With 7 and 8 TeV data, LHC has already done a good job in precision higgs
measurement.

• Current all channels combined results for total Higgs production Xsec:

σexp = (0.80± 0.14)σSM

• Percent level uncertainties can be achieved in the 14 TeV run [CMS snowmass

report 2013]

L (fb−1) γγ WW ZZ bb̄
300 [6%, 12%] [ 6%, 11%] [7%, 11% ] [11%, 14%]
3000 [4%, 8%] [4%, 7%] [4%, 7%] [5%, 7%]

• Theoretical accuracy need to match the experimental accuracy

• Great challenge to (QCD) theorist, but also great opportunities!
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Theoretical status: glue-glue fusion
• Current best theory predictions
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[Higgs Working Group Report]

a. NNLO scale b. NLO EW c. Large mt approx. d. quark mass input e. PDF

• Largest uncertainty from NNLO QCD scale variation: MUST BE
REDUCED!
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Higgs effective theory

• To very good approximation (∼ 1%), ggH interaction can be represented by
an effective coupling [Shifman, Vainshtein, Voloshin, Zakharov, 1979]

Leff = −1

4
λtHG

µν,aGaµν

• The matching coefficient λt can be
calculated perturbatively

• λt known to five loops!! [Schroder,

Steinhauser, 2005; Chetyrkin, Kuhn, Sturm,

2005]

• Based on EFT, higher order QCD
radiative corrections feasible
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History of precision Higgs physics

• NLO [Dawson, 1991; Djouadi, Spira, Zerwas, 1993]

• NNLO [Harlander, Kilgore, 2002; Anastasiou, Melnikov, 2002; Ravindran, Smith, van

Neerven, 2003]
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Impact of NLO and NNLO

• It turns out that QCD corrections to gg → H are significant.

• Total Xsec for gg → H up to NNLO at
√
s = 8 TeV LHC:

LO=9.6 pb

49%

δNLO=7.1 pb

36%
δNNLO=2.9 pb

15%

• Surprisingly large K factor at NLO and NNLO

• It’s expected that N3LO will have important impact

• Need to push calculation to N3LO to reduce uncertainty to percent level!
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N3LO soft-virtual corrections
for Higgs production

[Y. Li, H. X. Zhu, 1309.4391; Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1404.5839; Y.

Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]
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Higgs production at N3LO
• The calculation at N3LO looks formidable
• O(104) diagrams
• O(103) real/virtual master integrals

• Approximation needed!

10



D
ra

ft

Dominant part of cross section

• The Higgs production Xsec is a convolution of PDFs and partonic Xsec

σH = f ⊗ f ⊗ σ̂H(z)

• The partonic Xsec σ̂(z) depends on threshold variable z =
M2
H
ŝ =

M2
H

x1x2S

• z → 1 is the partonic threshold
limit. QCD radiations are severely
restricted

• σ̂H(z) can be divided into threshold
singular part, and regular part

σ̂H(z) = Sing(1− z) + Reg(1− z)

• Rapid decreasing of gluon luminosity
implies that σH is dominated by the
singular part

[CTEQ collaboration]
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Soft-virtual approximation
• The soft-virtual corrections Sing(1− z) has the expansion

Sing(1− z) =C00δ(1− z)
NLO + C10αsδ(1− z) + C11αsL1 + C12αsL2

NNLO + C20α
2
sδ(1− z) + C21α

2
sL1 + C22α

2
sL2 + C23α

2
sL3 + C24α

2
sL4

N3LO + C30α
3
sδ(1− z) + C31α

3
sL1 + C32α

3
sL2 + · · ·+ C36α

3
sL6

+ · · ·

• The singular Logarithms Li =
[

lni−1(1−z)
(1−z)

]
+

• The plus distribution is defined as∫ 1

0

dz

[
lni−1(1− z)

(1− z)

]
+

g(z) =

∫ 1

0

dz

[
lni−1(1− z)

(1− z)

]
(g(z)− g(1))

• Where do the singular soft-virtual contributions come from?
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Origin of singular contributions
• Scattering amplitudes in QCD have well-known soft singularities

p

k

1
(p+k)2 ∼ 1

2p·k

• The singular distribution Li and δ(1− z) are due to these soft singularities!

• The QCD soft interactions factorize

• Interaction of soft gluon and gluon with large

virtuality can be neglected

• Leads to the picture of two onshell hard

incoming parton, a cloud of soft gluon, and a

short distance hard interaction part
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Factorization of singular contributions

• The interaction between soft gluon and onshell hard parton can be organized
into a Wilson line

Y = 1 +
∞∑
m=1

∑
perm

(−g)m

m!

n · Aans · · ·n · A
a1
s

n · (
∑n
i=1 ki + iε) · · · (n · k1 + iε)

Tan · · ·T1 =
∑

perm
exp

[
1

n · P + iε
(−gn · As)

]

• nµ = pµ/p0 is a lightlike vector characterizes the direction of hard parton

• In equation, the singular contributions enjoy the factorization form

Sing(1− z) = H(Q)S(1− z)

• H is the so-called hard function. Known from three-loop gluon form factor
[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser, 2009; Gehrmann, Glover, Huber,

Ikizlerli, Studerus, 2010]
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The soft function

• The soft function S encodes the effects of real or virtual soft gluon radiations

• It’s defined as vacuum expectation value of intersected semi-infinite lightlike
Wilson lines

S(1− z) ≡
∑
Xs

〈0|T{YnY †n̄}|Xs〉δ(2EXs − (1− z)MH)〈0|T{Yn̄Y †n}|0〉

Yn(x) = P exp

[
igs

∫ 0

−∞
ds n ·A(x+ sn)

]
• To get N3LO soft-virtual corrections, we need to calculate the soft function

to N3LO!

– Involve phase space integrals with up to three soft gluons
– Lots of diagrams, lots of integrals
– Require advanced loop techniques

• I will try to explain the technique involved in a few slides
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N3LO Feynman diagrams for S
• At N3LO, we have up to three real gluon emitted from the Wilson lines

double virtual real virtual double real triple real

• For analytical calculation, it’s often the case that diagrams with more
real gluon radiations are more difficult than those with more virtual gluon
radiations

• Therefore, the most difficult diagrams are those with three real gluons crossing
the cut
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Reverse unitarity

• Calculation of real phase space integral can be simplified using the method
of reverse unitarity Anastasiou, Melnikov, 2002; Anastasiou, Dixon, Melnikov, Petriello,

2003

ddkδ(k2)θ(k0) =
1

2πi
ddk

(
1

k2 + iε
− 1

k2 − iε

)
• In the sense of integral reduciton, phase space integral can be treated as loop

integrals. Powerful technique of Integration-By-Parts identities can be used
to reduce complicated phase space integral to simpler one

• IBP reduction is based on the relation [Tkachov, 1981]∫
dDk

∂

∂kµ

[
qµI({ki}, {pi})

]
= 0

• Action of differential operator on the integrand leads to linear relations
between different integrals

• Several public computer packages available for IBPs reduction based on
Laporta algorithm [Laporta, 2000]
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An integral reduction example
• Consider an integral with five propagators

=

∫
ddk1d

dk2d
dk3δ+(k2

1)δ+(k2
2)δ+(k2

3)δ(1− (p1 + p2) · (k1 + k2 + k3))

(k1 + k2 + k3)2(k1 + k3)2(k1 + k3) · p1 k2 · p2

• After IBP reduction

=
10(−13 + 3d)(−11 + 3d)(−10 + 3d)(−8 + 3d)(−7 + 3d)

(−4 + d)4(−14 + 3d)

−
4(−13 + 3d)(−11 + 3d)

(−4 + d)(−14 + 3d)

• The original integral is reduced to simpler ( zero- and three-propagator)
integrals
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Reducing # of loop by scaling symmetry
• Typical master integral encountered

MI =

∫
ddk1 d

dk2 d
dk3 δ+(k2

1)δ+(k2
2)δ+(k2

3)δ(1− (p1 + p2) · (k1 + k2 + k3))

(k2 · p2) ((k1 + k3) · p1))

• This is a “three-loop” integral. Omitting the delta function, The integral
transform under the following scaling transformation unifromly

p1 → λ1p1 , p2 → λ2p2, MI→ 1

λ1λ2
MI

• Insert a unit operator, 1 =
∫

ddQδ(d)(Q− k1 − k2 − k3), The original integral
factorizes into two part

AuxI =

∫
ddk1d

dk2d
dk3δ+(k2

1)δ+(k2
2)δ+(k2

3)δ
(d)(Q− k1 − k2 − k3)

(k2 · p2) ((k1 + k3) · p1)

MI =

∫
d
D
QΘ(Q

2
)

1

Q · p1Q · p2

AuxI

(
Q2p1 · p2

Q · p1Q · p2

)
• Only need to calculate a “two-loop” integral AuxI! The Q integral is almost trivial
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Dispersion integral method

• Consider the auxiliary “two-loop” integral,

AuxI =

∫
ddk1d

dk2δ+(k2
1)δ+(k2

2)δ+((Q− k1 − k2)
2)

(k2 · p2) ((Q− k2) · p1)

• Calculation of this class of integrals by explicit phase space parametrization
is difficult, because of the delta function constraint δ((Q − k1 − k2)2). In
particular, Lorentz invariance of the reuslt become obscure once introducing
explicit phase space parameterization.

• Again the solution comes from dispersion relation
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Dispersion integral method

• Cutting a feynman diagram is equivalent to taking the appropriate
discontinuity of the same diagram

= DiscQ2

• Q =
∑

i ki is the sum of momentum crossing

the cut. Q2 > 0 open the threshold where

all ki are onshell

• Instead of computing phase space integral,

we can now compute a loop integral and then

take the discontinuity. This has the great

advantage of being able to use all sorts of

techniques developed for loop integrals
ReQ2

ImQ2
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Hypergeometric function integral
• The corresponding loop integrals have Feynman parameter representation∫

[dx]P ({xi})/Q({xi}), P and Q are rational function of xi.
• Example: the auxiliary integral defined in the previous slides have Feynman

parameter representation

AutI =

∫
ddk1d

dk2δ+(k2
1)δ+(k2

2)δ+((Q− k1 − k2)2)

(k2 · p2) ((Q− k2) · p1)

=π
2
Γ(5− d)

∫ ∞
0

5∏
i=1

dxi δ(1−
5∑
i=1

xi)
(x2x3 + x1(x2 + x3))5−3d/2

((−Q2)x1x2x3 + 2(x3(x2 + 2x4)x5 + x1(x3x4 + (x2 + 2x4)x5)))−5+d

• Most of the integrals of this kind can be integrated in closed form into
(generalized) hypergeometric function (in d = 4− 2ε dimension)

AuxI ∼ 2F1(1, 1; 2− 2ε;Q2)× 3F2(1, 1− 2ε, 1− ε;−2ε, 1 + ε; 1)

• It’s remarkable fact that the seemingly in the very frontier of perturbative
QCD calculations, special functions like hypergeometric functions studied by
Mathematians 300 years ago (Euler, Gauss, Riemann ) still play an important
role
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soft-virtual corrections at N3LO

• The final results of this lengthy calculation is the soft-virtual corrections at
N3LO [Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]

Sing
(3)

(1− z) = C30α
3
sδ(1− z) + C31α

3
sL1 + C32α

3
sL2 + · · ·+ C36α

3
sL6

• The coefficients of the logarithmic terms C31 · · ·C36 are known long ago by threshold

resummation [Moch, Vogt, 2005; Idilbi et.al.; Ravindran et.al.; L. L. Yang et.al., 2008] .
We find complete agreement with them: non-trivial check!

• The coefficient C30 can not be predicted by resummation: new result from
our calculation!
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soft-virtual corrections at N3LO

• The final results of this lengthy calculation is the soft-virtual corrections at
N3LO [Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]

Sing
(3)

(1− z) = C30α
3
sδ(1− z) + C31α

3
sL1 + C32α

3
sL2 + · · ·+ C36α

3
sL6

(4π)
3
C30 =C

3
A

(
979ζ2ζ3

24
+

16151ζ2
1296

−
15257ζ4

864
−

2003ζ6
48

−
7579ζ5

144
+

413ζ23
6
−

819ζ3
16

+
215131

5184

)

+ C
2
ANf

(
−

125ζ2ζ3
12

−
70ζ2
81

+
2629ζ4

432
+

869ζ5
72

+
1231ζ3

216
−

98059

5184

)

+ CACFNf

(
3ζ2ζ3 −

71ζ2
36

+
11ζ4
72

+
5ζ5
2

+
13ζ3

2
−

63991

5184

)

+ CAN
2
f

(
−

133ζ2
324

−
19ζ4
36

+
43ζ3
108

+
2515

1728

)
+ C

2
FNf

(
37ζ3
12
− 5ζ5 +

19

18

)

+ CFN
2
f

(
−

23ζ2
72
−
ζ4
36
−

7ζ3
6

+
4481

2592

)

• Results expressed in terms of rational numbers and Riemann’s zeta function,
ζs =

∑∞
n=1

1
ns
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Compare with Durham-Zurich collaboration

• Recently, an independent calculation of the soft-virtual corrections for Higgs
production is reported by a Durham-Zurich collaboration [Anastasiou, Duhr,

Dulat, Furlan, Gehrmann, Herzog, Mistlberger, 1302.4379, 1309.4393,1311.1425,1403.4616]

• In their calculations, they use energy and angular parameterization of
phase space integral, Mellin-Barnes, symbols, and coproduct techniques for
evaluating the integrals

• In constrast, we use dispersion method, reduction # of loops by scaling
symmetry, and hypergeometric function for the integral evaluation

• The calculations by the two groups are in full agreement!

• Furthermore, we are able to get closed from expression for all the integrals to
all orders in the dimensional regulation parameter ε, which will be important
for future N4LO calculation.

• In addition, we also compute the soft-virtual corrections to Drell-Yan and
N = 4 Supersymmetric Yang-Mills theory, which they don’t have.

25



D
ra

ft

N3LO soft-virtual corrections
for Drell-Yan lepton pair

production

[Y. Li, H. X. Zhu, 1309.4391; Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1404.5839; Y.

Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]
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Soft-virtual corrections to Drell-Yan
production

• QCD factorization implies that the soft-gluon radiations doesn’t know too
much about the underlying hard process

• Soft-virtual corrections calculated for Higgs production can be easily
translated into Drell-Yan production
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Soft-virtual corrections to Drell-Yan
production

• We find that the soft-virtual corrections for Drell-Yan production has the form

(4π)
3
C
DY
30 =

(
208ζ3ζ2

3
−

28132ζ2
81

−
6016ζ3

81
−

2878ζ4
27

− 8ζ5 +
110651

243

)
CACFNf

+

(
3280ζ23

3
+

28736ζ2ζ3
9

−
20156ζ3

9
−

13186ζ2
27

−
832ζ4

27
−

39304ζ5
9

−
2602ζ6

9
+

74321

36

)
CAC

2
F

+

(
−

400ζ23
3
−

884ζ2ζ3
3

+
82385ζ3

81
+ 843ζ2 +

14611ζ4
54

− 204ζ5 +
1658ζ6

9
−

1505881

972

)
C

2
ACF

+ CF

(
20ζ2NFVCA −

80ζ2NFV

CA
+

28

3
ζ3NFVCA −

112ζ3NFV

3CA
− 2ζ4NFVCA +

8ζ4NFV

CA
−

160

3
ζ5NFVCA +

640ζ5NFV

3CA

+8NFVCA −
32NFV

CA

)
+

(
−

5504

9
ζ3ζ2 +

2632ζ2
27

+
3512ζ3

9
+

136ζ4
27

+
5536ζ5

9
−

421

3

)
C

2
FNf

+

(
2416ζ2

81
−

1264ζ3
81

+
320ζ4

27
−

7081

243

)
CFN

2
f

+

(
10336ζ23

3
+ 80ζ2ζ3 − 460ζ3 −

130ζ2
3

+ 206ζ4 + 1328ζ5 −
23092ζ6

9
−

5599

6

)
C

3
F (1)

• Again, results are expressed in terms of zeta values.
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N3LO soft-virtual corrections in
N = 4 Supersymmetric

Yang-Mills theory

[Y. Li, H. X. Zhu, 1309.4391; Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1404.5839; Y.

Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]
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N = 4 SYM
• N = 4 SYM is a close cousin of QCD
• It has one adjoint gluon, four adjoint fermion and six adjoint scalar
• The radiations of gluon in N = 4 SYM exhibite the same soft singularities as

in QCD
• Our calculations are general enough to generalize to N = 4 SYM

• But you might ask: why N = 4 SYM?
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N = 4 SYM

• N = 4 SYM is believed to be the “simplest” QFT by many people [Arkani-

Hamed et.al.]

• It’s a supersymmetrc conformal field theory

• At large Nc it has a gravity duality

• It’s an integrable QFT at large Nc

• A perfect model for studying perturbative radiation corrections

• If there is pattern in perturbative QFT, it will be easier to identify in N = 4
SYM

• A particularly interesting property is the maximal transcendentality
principle [Kotikov, Lipatov, Onishchenko, Velizhanin, 2004] .
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Maximal transcendentality principle

• The maximal transcendentality principle states that, for anomalous dimension
of Wilson twist two operator in N = 4 (Mellin moment of DGLAP splitting

kernel), γab(j) = −
∫ 1

0
dxxj−1Pb→a(x), it has the propertiy of unifrom

transcendentality, and coincides with the leading transcendental part of the
QCD result [Kotikov, Lipatov, Onishchenko, Velizhanin, 2004] . E.g., in the limit of
j →∞, the dominant behaviour is controlled by cusp anomalous dimension

γ(j) =
1

2
γK(αs) ln(j) +O(j0)

• At four loops, the cusp anomalous in large Nc limit is given by [Bern, Czakon,

Dixon, Kosower, Smirnov, 2006]

γK(αs) = â− π
2

6
â2 +

11

180
π4â3 −

(
73

2520
π6 + ζ2

3

)
â4 + · · · â =

αsNc
2π

The transcendental weight of ζn is n, and the transcendentality is additive for
products of zeta value. The cusp anomalous dim. has weight 2L− 2 at L loops.
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maximal transcendentality principle

• The consideration maximal transcendentality principle has led Beisert, Eden
and Staudacher to find the the correct integral equation satisfied by the cusp
anomalous dim. in N = 4 SYM.

• Remarkably, the maximal transcendentality principle applies not for
anomalous dim., but also for N = 4 SYM scattering amplitudes at leading
color and subleading color level, light-like Wilson loops, form factor, and
correlation function.

• However, it’s also known that in some cases, the principle doesn’t hold, e.g.,
in angular distribution of dijet production at NLO.

• Given our ablitity to compute soft-virtual corrections in N = 4 SYM, it would
be interesting for us to test this principle.
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soft-virtual corrections and maximall transcendentality principle

• We find that the soft-virtual corrections for the production of a component of stress-tensor

operator is surprisingly simple [Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx]

(4π)
3
C
N=4
30 = N

3
c

(
−

2003ζ6

48
+

413ζ2
3

6

)

• to be contrasted with the results for Higgs production

(4π)
3
C
H
30 =C

3
A

(
979ζ2ζ3

24
+

16151ζ2
1296

−
15257ζ4

864
−

2003ζ6
48

−
7579ζ5

144
+

413ζ23
6
−

819ζ3
16

+
215131

5184

)

+ C
2
ANf

(
−

125ζ2ζ3
12

−
70ζ2
81

+
2629ζ4

432
+

869ζ5
72

+
1231ζ3

216
−

98059

5184

)

+ CACFNf

(
3ζ2ζ3 −

71ζ2
36

+
11ζ4
72

+
5ζ5
2

+
13ζ3

2
−

63991

5184

)

+ CAN
2
f

(
−

133ζ2
324

−
19ζ4
36

+
43ζ3
108

+
2515

1728

)
+ C

2
FNf

(
37ζ3
12
− 5ζ5 +

19

18

)

+ CFN
2
f

(
−

23ζ2
72
−
ζ4
36
−

7ζ3
6

+
4481

2592

)

• Remarkably, all the lower weight terms in the QCD results all cancel in the combination of

all contributions!
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soft-virtual corrections and maximall transcendentality principle

• We therefore confirm that the principle of maximal transcendentality holds
also in cross section like physical observable.

• The simplicity of the results in N = 4 SYM hints at a better organization
of the calculations, in which the cancellation of lower weight terms become
explicit.

• Example is in the calculation of scattering amplitudes, where a conformally
invariant basis for the integrals exist [Drummond, Henn, Smirnov, Sokatchev, 2006]

• The agreement of N = 4 SYM and QCD for the leading transcendental
term for soft-virtual corrections open the possibility that QCD results can
be derived from N = 4 results, in the sense that gluonic contributions can be
extracted once the fermion and scalar contributions are known. And for the
latter case, the calculation is usually easier than the gluonic contributions.
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Conclusion

• Precision Higgs coupling measurement requires N3LO calculation.

• N3LO soft-virtual corrections finished, a key step towards full N3LO [Y. Li, A.

von Manteuffel, R. Schabinger, H. X. Zhu, 2013,2014; Anastasiou et.al., 2013,2014]

• Calculations based on reverse unitarity, IBP reduction, reduction of #
of loops by scaling symmetry, dispersion reliation, and hypergeometric
function representation.

• We also present Soft-virtual corrections for Drell-Yan and N = 4 SYM [Y. Li,

A. von Manteuffel, R. Schabinger, H. X. Zhu, 1410.xxxx].

• Remarkably, principle of maximal transcendentality also works for soft-
virtual corrections

• So far, the transcendentality principle is only an observational fact.
Explaining it in terms of symmetry principle would be very interesting. A
better understanding of this transcendentality principle might lead to better
calculational technique for this kind of problem.
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Outlook

• In the future, a full N3LO calculation goes beyond soft-virtual approximation
highly demanded

• All the matrix elements are known. The obstacle is the phase space integrals

• E.g., For the case of double virtual real contributions

• the integration over final phase space is divergent.

• It’s possible to do the phase space integral directly, with the two-loop QCD
splitting amplitudes to O(ε2) as input [L. Dixon, H. X. Zhu, in preparation]
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Outlook
• For the virtual double real and triple contributions direct integration is difficult

• However, the partonic cross section, and therefore all the integrals, are functions of z =
M2
H

x1x2S

• It’s possible to derive a symstem of first order ordinary differential equations satisfied by

these integrals

• The differential equations will only have singularities at z = 0, z = 1, z =∞
• The solution of the differential equation has the form of iterative integral, solution given by

harmonic polylogarithms

• The soft-virtual corrections [Y. Li, A. von Manteuffel, R. Schabinger, H. X. Zhu, 2013,2014;

Anastasiou et.al., 2013,2014] will be essential for the determination of integration constant

for the differential equation!

• We’re looking forward to the full calculation of N3LO QCD corrections, which plays an

important role in precision Higgs phenomenology
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